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Systems that operate in purely statistical mode of inference entail theoretical
limits on their power and performance. Such systems cannot reason about
interventions and retrospection and, therefore, cannot serve as the basis for
strong AI. To achieve human-level intelligence, learning machines need the
guidance of a model of external reality, similar to the ones used in causal
inference tasks. To demonstrate the essential role of such models, this paper
presents a summary of seven tasks which are beyond reach of associational
learning systems and which have been accomplished using the tools of
causal modeling.
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1 INTRODUCTION
The dramatic success in machine learning has led to an explosion of
AI applications and increasing expectations for autonomous systems
that exhibit human-level intelligence. These expectations, however,
have met with fundamental obstacles that cut across many applica-
tion areas. One such obstacle is adaptability or robustness. Machine
learning researchers have noted that current systems lack the capa-
bility of recognizing or reacting to new circumstances they have not
been specifically programmed or trained for. Intensive theoretical
and experimental efforts toward “transfer learning,” “domain adap-
tation,” and “Lifelong learning” [Chen and Liu 2016] are reflective
of this obstacle.

Another obstacle is explainability, that is, “machine learning mod-
els remain mostly black boxes” [Ribeiro et al. 2016] unable to ex-
plain the reasons behind their predictions or recommendations,
thus eroding users trust. and impeding diagnosis and repair. See
[Marcus 2018] and ⟨http://www.sciencemag.org/news/2018/05/ai-
researchers-allege-machine-learning-alchemy⟩.

A third obstacle concerns the understanding of cause-effect con-
nections. This hallmark of human cognition [Lake et al. 2015; Pearl
andMackenzie 2018] is, in this author’s opinion, a necessary (though
not sufficient) ingredient for achieving human-level intelligence.
This ingredient should allow computer systems to choreograph a
parsimonious and modular representation of their environment,
interrogate that representation, distort it by acts of imagination and
finally answer “What if?” kind of questions. Examples are interven-
tional questions: “What if I make it happen?” and retrospective or
explanatory questions: “What if I had acted differently?” or “what if
my flight had not been late?”
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I postulate that all three obstacles mentioned above require equip-
ping machines with causal modeling tools, in particular, causal
diagrams and their associated logic. Advances in graphical and
structural models have made counterfactuals computationally man-
ageable and thus rendered causal reasoning a viable component in
support of strong AI.

In the next section, I will describe a three-level hierarchy that re-
stricts and governs inferences in causal reasoning. The final section
summarizes how traditional impediments are circumvented using
modern tools of causal inference.

THE THREE LAYER CAUSAL HIERARCHY
A useful insight unveiled by the theory of causal models is the
classification of causal information in terms of the kind of questions
that each class is capable of answering. The classification forms a
3-level hierarchy in the sense that questions at level i (i = 1, 2, 3)
can only be answered if information from level j (j ≥ i) is available.
Figure 1 shows the 3-level hierarchy, together with the charac-

teristic questions that can be answered at each level. The levels are
titled 1. Association, 2. Intervention, and 3. Counterfactual. The
names of these layers were chosen to emphasize their usage. We
call the first level Association, because it invokes purely statistical
relationships, defined by the naked data.1 For instance, observing
a customer who buys toothpaste makes it more likely that he/she
buys floss; such association can be inferred directly from the ob-
served data using conditional expectation. Questions at this layer,
because they require no causal information, are placed at the bottom
level on the hierarchy. The second level, Intervention, ranks higher
than Association because it involves not just seeing what is, but
changing what we see. A typical question at this level would be:
What will happen if we double the price? Such questions cannot be
answered from sales data alone, because they involve a change in
customers behavior, in reaction to the new pricing. These choices
may differ substantially from those taken in previous price-raising
situations. (Unless we replicate precisely the market conditions that
existed when the price reached double its current value.) Finally,
the top level is called Counterfactuals, a term that goes back to the
philosophers David Hume and John Stewart Mill, and which has
been given computer-friendly semantics in the past two decades.
A typical question in the counterfactual category is “What if I had
acted differently,” thus necessitating retrospective reasoning.
Counterfactuals are placed at the top of the hierarchy because

they subsume interventional and associational questions. If we have
a model that can answer counterfactual queries, we can also an-
swer questions about interventions and observations. For example,
the interventional question, What will happen if we double the

1Some other terms used in connection to this layer are: “model-free,” “model-blind,”
“black-box,” or “data-centric.” Darwiche [2017] used “function-fitting,” for it amounts to
fitting data by a complex function defined by the neural network architecture.
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Level Typical Typical Questions Examples
(Symbol) Activity
1. Association
P(y |x)

Seeing What is?
How would seeing X
change my belief inY?

What does a symptom tell me about
a disease?
What does a survey tell us about the
election results?

2. Intervention
P(y |do(x), z)

Doing
Intervening

What if?
What if I do X?

What if I take aspirin, will my
headache be cured?
What if we ban cigarettes?

3. Counterfactuals
P(yx |x

′,y′)
Imagining,
Retrospection

Why?
Was it X that caused Y?
What if I had acted
differently?

Was it the aspirin that stopped my
headache?
Would Kennedy be alive had Os-
wald not shot him?
What if I had not been smoking the
past 2 years?

Fig. 1. The Causal Hierarchy. Questions at level i can only be answered if information from level i or higher is available.

price? can be answered by asking the counterfactual question: What
would happen had the price been twice its current value? Likewise,
associational questions can be answered once we can answer in-
terventional questions; we simply ignore the action part and let
observations take over. The translation does not work in the oppo-
site direction. Interventional questions cannot be answered from
purely observational information (i.e., from statistical data alone).
No counterfactual question involving retrospection can be answered
from purely interventional information, such as that acquired from
controlled experiments; we cannot re-run an experiment on subjects
who were treated with a drug and see how they behave had they
not been given the drug. The hierarchy is therefore directional, with
the top level being the most powerful one.
Counterfactuals are the building blocks of scientific thinking as

well as legal and moral reasoning. In civil court, for example, the
defendant is considered to be the culprit of an injury if, but for
the defendant’s action, it is more likely than not that the injury
would not have occurred. The computational meaning of but for
calls for comparing the real world to an alternative world in which
the defendant action did not take place.
Each layer in the hierarchy has a syntactic signature that char-

acterizes the sentences admitted into that layer. For example, the
association layer is characterized by conditional probability sen-
tences, e.g., P(y |x) = p stating that: the probability of event Y = y
given that we observed event X = x is equal to p. In large sys-
tems, such evidential sentences can be computed efficiently using
Bayesian Networks, or any number of machine learning techniques.

At the interventional layerwe find sentences of the type P(y |do(x),
z), which denotes “The probability of event Y = y given that we
intervene and set the value ofX to x and subsequently observe event
Z = z. Such expressions can be estimated experimentally from ran-
domized trials or analytically using Causal BayesianNetworks [Pearl
2000, Chapter 3]. A child learns the effects of interventions through
playful manipulation of the environment (usually in a deterministic
playground), and AI planners obtain interventional knowledge by

exercising their designated sets of actions. Interventional expres-
sions cannot be inferred from passive observations alone, regardless
of how big the data.
Finally, at the counterfactual level, we have expressions of the

type P(yx |x ′,y′) which stand for “The probability that event Y = y
would be observed had X been x , given that we actually observed X
to be x ′ and Y to be y′. For example, the probability that Joe’s salary
would be y had he finished college, given that his actual salary is y′
and that he had only two years of college.” Such sentences can be
computed only when we possess functional or Structural Equation
models, or properties of such models [Pearl 2000, Chapter 7].
This hierarchy, and the formal restrictions it entails, explains

why machine learning systems, based only on associations, are
prevented from reasoning about actions, experiments and causal
explanations.2

THE SEVEN TOOLS OF CAUSAL INFERENCE (OR WHAT
YOU CAN DOWITH A CAUSAL MODEL THAT YOU
COULD NOT DO WITHOUT?)
Consider the following five questions:

• How effective is a given treatment in preventing a disease?
• Was it the new tax break that caused our sales to go up?
• What is the annual health-care costs attributed to obesity?
• Can hiring records prove an employer guilty of sex discrimi-
nation?

• I am about to quit my job, but should I?
The common feature of these questions is that they are concerned

with cause-and-effect relationships. We can recognize them through
words such as “preventing,” “cause,” “attributed to,” “discrimination,”
and “should I.” Such words are common in everyday language, and

2Some readers have pointed out to me that the limitation of level-1 of the hierarchy
can perhaps be alleviated by current deep learning techniques, which try to minimize
“over fit.” in contrast to classical statistical techniques which try to maximize “fit.”
Unfortunately, the theoretical barriers that separate the three layers in the hierarchy
tell us that the nature of our objective function does not matter. As long as our system
optimizes some property of the observed data, however noble or sophisticated, while
making no reference to the world outside the data, we are back to level-1 of the hierarchy
with all the limitations that this level entails.
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our society constantly demands answers to such questions. Yet, until
very recently science gave us no means even to articulate them, let
alone answer them. Unlike the rules of geometry, mechanics, optics
or probabilities, the rules of cause and effect have been denied the
benefits of mathematical analysis.

To appreciate the extent of this denial, readers would be stunned
to know that only a few decades ago scientists were unable to write
down a mathematical equation for the obvious fact that “mud does
not cause rain.” Even today, only the top echelon of the scientific
community can write such an equation and formally distinguish
“mud causes rain” from “rain causes mud.”

Things have changed dramatically in the past three decades, A
mathematical language has been developed for managing causes
and effects, accompanied by a set of tools that turn causal analysis
into a mathematical game, not unlike solving algebraic equations,
or finding proofs in high-school geometry. These tools permit us to
express causal questions formally, codify our existing knowledge
in both diagrammatic and algebraic forms, and then leverage our
data to estimate the answers. Moreover, the theory warns us when
the state of existing knowledge or the available data are insufficient
to answer our questions; and then suggests additional sources of
knowledge or data to make the questions answerable.
This development has had a transformative impact on all data-

intensive sciences, especially social science and epidemiology, in
which causal diagrams have become a second language [Morgan
and Winship 2015; VanderWeele 2015]. In these disciplines, causal
diagrams have helped scientists extract causal relations from asso-
ciations, and de-construct paradoxes that have baffled researchers
for decades [Pearl and Mackenzie 2018; Porta 2014].

I call the mathematical framework that led to this transformation
“Structural Causal Models (SCM).”

The SCM deploys three parts

(1) Graphical models,
(2) Structural equations, and
(3) Counterfactual and interventional logic

Graphical models serve as a language for representing what we
know about the world, counterfactuals help us to articulate what
we want to know, while structural equations serve to tie the two
together in a solid semantics.

E
S

E
S

F

Assumptions
(Graphical model)

Data Fit Indices

Estimate
(Answer to query)

Query
answering the query)

(Recipe for
Estimand

Inputs Outputs

 

Fig. 2. How the SCM “inference engine” combines data with causal model
(or assumptions) to produce answers to queries of interest.

Figure 2 illustrates the operation of SCM in the form of an infer-
ence engine. The engine accepts three inputs: Assumptions, Queries,
and Data, and produces three outputs: Estimand, Estimate and Fit
indices. The Estimand (ES ) is a mathematical formula that, based on
the Assumptions, provides a recipe for answering the Query from
any hypothetical data, whenever they are available. After receiv-
ing the Data, the engine uses the Estimand to produce an actual
Estimate (ÊS ) for the answer, along with statistical estimates of the
confidence in that answer (To reflect the limited size of the data set,
as well as possible measurement errors or missing data.) Finally, the
engine produces a list of “fit indices” which measure how compatible
the data are with the Assumptions conveyed by the model.
To exemplify these operations, let us assume that our Query

stands for the causal effect of X (taking a drug) on Y (recovery),
written Q = P(Y |do(X )). Let the modeling assumptions be encoded
in the graph below where Z is a third variable (say Gender) affecting

X Y

Z

bothX andY . Finally, let the data be sampled at random from a joint
distribution P(X ,Y ,Z ). The Estimand (ES ) calculated by the engine
(using Tool 2, below) will be the formula ES =

∑
z P(Y |X ,Z )P(Z ),

which defines a procedure of estimation. It calls of estimating the
gender-specific conditional distributions P(Y |X ,Z ) for males and
females, weighing them by the probability P(Z ) of membership in
each gender, then taking the average. Note that the estimand ES
defines a property of P(X ,Y ,Z ) that, if properly estimated, would
provide a correct answer to our Query. The answer itself, the Esti-
mate ÊS , can be produced by any number of techniques that produce
a consistent estimate of ES from finite samples of P(X ,Y ,Z ). For
example, the sample average (of Y ) over all cases satisfying the spec-
ified X and Z conditions, would be a consistent estimate. But more
efficient estimation techniques can be devised to overcome data
sparsity [Rosenbaum and Rubin 1983]. This is where deep learning
techniques excel, and where they are often employed [van der Laan
and Rose 2011].

Finally, the Fit Index in our example will be NULL. In other words,
after examining the structure of the graph, the engine should con-
clude (using Tool 1, below) that the assumptions encoded do not
have any testable implications. Therefore, the veracity of the resul-
tant estimate must lean entirely on the assumptions encoded in the
graph – no refutation nor corroboration can be obtained from the
data.3
The same procedure applies to more sophisticated queries, for

example, the counterfactual query Q = P(yx |x
′,y′) discussed be-

fore. We may also permit some of the data to arrive from controlled
experiments, which would take the form P(V |do(W )), in case W is
the controlled variable. The role of the Estimand would remain that
of converting the Query into the syntactic format of the available
3The assumptions encoded in the graph are conveyed by its missing arrows. For
example, Y does not influence X or Z , X does not influence Z and, most importantly,
Z is the only variable affecting both X and Y . That these assumptions lack testable
implications can be concluded from the fact that the graph is complete, i.e., no edges
are missing.
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data and, then, guiding the choice of the estimation technique to
ensure unbiased estimates. Needless to state, the conversion task
is not always feasible, in which case the Query will be declared
“non-identifiable” and the engine should exit with FAILURE. For-
tunately, efficient and complete algorithms have been developed
to decide identifiability and to produce estimands for a variety of
counterfactual queries and a variety of data types [Bareinboim and
Pearl 2016; Shpitser and Pearl 2008; Tian and Pearl 2002].
Next we provide a bird’s eye view of seven tasks accomplished

by the SCM framework, the tools used in each task, and discuss the
unique contribution that each tool brings to the art of automated
reasoning.

Tool 1: Encoding Causal Assumptions – Transparency and
Testability
The task of encoding assumptions in a compact and usable form,
is not a trivial matter once we take seriously the requirement of
transparency and testability.4 Transparency enables analysts to dis-
cern whether the assumptions encoded are plausible (on scientific
grounds), or whether additional assumptions are warranted. Testa-
bility permits us (be it an analyst or amachine) to determinewhether
the assumptions encoded are compatible with the available data
and, if not, identify those that need repair.

Advances in graphical models have made compact encoding fea-
sible. Their transparency stems naturally from the fact that all as-
sumptions are encoded graphically, mirroring the way researchers
perceive of cause-effect relationship in the domain; judgments of
counterfactual or statistical dependencies are not required, since
these can be read off the structure of the graph. Testability is fa-
cilitated through a graphical criterion called d-separation, which
provides the fundamental connection between causes and probabil-
ities. It tells us, for any given pattern of paths in the model, what
pattern of dependencies we should expect to find in the data [Pearl
1988].

Tool 2: Do-calculus and the control of confounding
Confounding, or the presence of unobserved causes of two or more
variables, has long been considered the the major obstacle to draw-
ing causal inference from data, This obstacle had been demystified
and “deconfounded” through a graphical criterion called “back-door.”
In particular, the task of selecting an appropriate set of covariates to
control for confounding has been reduced to a simple “roadblocks”
puzzle manageable by a simple algorithm [Pearl 1993].

For models where the “back-door” criterion does not hold, a sym-
bolic engine is available, called do-calculus, which predicts the effect
of policy interventions whenever feasible, and exits with failure
whenever predictions cannot be ascertained with the specified as-
sumptions [Pearl 1995; Shpitser and Pearl 2008; Tian and Pearl
2002].

Tool 3: The Algorithmization of Counterfactuals
Counterfactual analysis deals with behavior of specific individuals,
identified by a distinct set of characteristics, For example, given that

4Economists, for example, having chosen algebraic over graphical representations, are
deprived of elementary testability-detecting features [Pearl 2015b].

Joe’s salary is Y = y, and that he went X = x years to college, what
would Joe’s salary be had he had one more year of education.

One of the crowning achievements of modern work on causality
has been to formalize counterfactual reasoning within the graphical
representation, the very representation researchers use to encode
scientific knowledge. Every structural equation model determines
the truth value of every counterfactual sentence. Therefore, we can
determine analytically if the probability of the sentence is estimable
from experimental or observational studies, or combination thereof
[Balke and Pearl 1994; Pearl 2000, Chapter 7].

Of special interest in causal discourse are counterfactual questions
concerning “causes of effects,” as opposed to “effects of causes.”
For example, how likely it is that Joe’s swimming exercise was a
necessary (or sufficient) cause of Joe’s death [Halpern and Pearl
2005; Pearl 2015a].

Tool 4: Mediation Analysis and the Assessment of Direct
and Indirect Effects
Mediation analysis concerns the mechanisms that transmit changes
from a cause to its effects. The identification of such intermediate
mechanism is essential for generating explanations and counter-
factual analysis must be invoked to facilitate this identification.
The graphical representation of counterfactuals enables us to de-
fine direct and indirect effects and to decide when these effects are
estimable from data, or experiments [Pearl 2001; Robins and Green-
land 1992; VanderWeele 2015]. Typical queries answerable by this
analysis are: What fraction of the effect of X on Y is mediated by
variable Z .

Tool 5: Adaptability, External Validity and Sample Selection
Bias
The validity of every experimental study is challenged by disparities
between the experimental and implementational setups. A machine
trained in one environment cannot be expected to perform well
when environmental conditions change, unless the changes are
localized and identified. This problem, and its various manifesta-
tions are well recognized by AI researchers, and enterprises such
as “domain adaptation,” “transfer learning,” “life-long learning,” and
“explainable AI” [Chen and Liu 2016], are just some of the subtasks
identified by researchers and funding agencies in an attempt to alle-
viate the general problem of robustness. Unfortunately, the problem
of robustness, in its broadest form, requires a causal model of the
environment, and cannot be handled at the level of Association. As-
sociations are not sufficient for identifying the mechanisms affected
by changes that occurred [Pearl and Bareinboim 2014]. The reason
being that surface changes in observed associations do not uniquely
identify the underlying mechanism responsible for the change. The
do-calculus discussed above now offers a complete methodology
for overcoming bias due to environmental changes. It can be used
both for re-adjusting learned policies to circumvent environmental
changes and for controlling bias due to non-representative samples
[Bareinboim and Pearl 2016].
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Tool 6: Recovering from Missing Data
Problems of missing data plague every branch of experimental sci-
ence. Respondents do not answer every item on a questionnaire,
sensors malfunction as weather conditions worsen, and patients
often drop from a clinical study for unknown reasons. The rich
literature on this problem is wedded to a model-free paradigm of
associational analysis and, accordingly, it is severely limited to situ-
ations where missingness occurs at random, that is, independent of
values taken by other variables in the model. Using causal models
of the missingness process we can now formalize the conditions
under which causal and probabilistic relationships can be recovered
from incomplete data and, whenever the conditions are satisfied,
produce a consistent estimate of the desired relationship [Mohan
and Pearl 2018; Mohan et al. 2013].

Tool 7: Causal Discovery
The d-separation criterion described above enables us to detect and
enumerate the testable implications of a given causal model. This
opens the possibility of inferring, with mild assumptions, the set
of models that are compatible with the data, and to represent this
set compactly. Systematic searches have been developed which,
in certain circumstances, can prune the set of compatible models
significantly to the point where causal queries can be estimated
directly from that set [Pearl 2000; Peters et al. 2017; Spirtes et al.
2000].
Alternatively, Shimizu et al. [2006] proposed a method of dis-

covering causal directionality based on functional decomposition
[Peters et al. 2017]. The idea is that in a linear model X → Y with
non-Gaussian noise, P(y) is a convolution of two non-Gaussian
distributions and would be, figuratively speaking, “more Gaussian”
than P(x). The relation of “more Gaussian than” can be given pre-
cise numerical measure and used to infer directionality of certain
arrows.
Tian and Pearl [2002] developed yet another method of causal

discovery based on the detection of “shocks,” or spontaneous local
changes in the environment which act like “Nature’s interventions,”
and unveil causal directionality toward the consequences of those
shocks.

CONCLUSIONS
I have argued that causal reasoning is an indispensable component
of human thought that should be formalized and algorithimitized
toward achieving human-level machine intelligence. I have expli-
cated some of the impediments toward that goal in the form of a
three-level hierarchy, and showed that inference to levels 2 and
3 require a causal model of one’s environment. I have described
seven cognitive tasks that require tools from those two levels of
inference and demonstrated how they can be accomplished in the
SCM framework.

It is important to note that themodels used in accomplishing these
tasks are structural (or conceptual), and requires no commitment to
a particular form of the distributions involved. On the other hand,
the validity of all inferences depend critically on the veracity of
the assumed structure. If the true structure differs from the one

assumed, and the data fits both equally well, substantial errors may
result, which can only be assessed through a sensitivity analysis.

It is also important to keep in mind that the theoretical limitations
of model-free machine learning do not apply to tasks of prediction,
diagnosis and recognition, where interventions and counterfactuals
assume a secondary role.

However, the model-assisted methods by which these limitations
are circumvented can nevertheless be applicable to problems of opac-
ity, robustness, explainability and missing data, which are generic to
machine learning tasks. Moreover, given the transformative impact
that causal modeling has had on the social and medical sciences, it is
only natural to expect a similar transformation to sweep through the
machine learning technology, once it is enriched with the guidance
of a model of the data-generating process. I expect this symbiosis to
yield systems that communicate with users in their native language
of cause and effect and, leveraging this capability, to become the
dominant paradigm of next generation AI.
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