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Abstrakt

Rekonstrukce velkých roztroušených dat pomocí některé z interpolačních nebo aproxi-
mačních metod je častým úkolem v mnoha technických aplikacích. Pro interpolaci nebo
aproximaci dat bylo sice vyvinuto několik technik, ale obvykle vyžadují, aby byla data v
nějakém smyslu uspořádána, např. pravoúhlá sít’, strukturovaná sít’, nestrukturovaná sít’,
atd. Bohužel konverze roztroušených dat na polopravidelnou mřížku pomocí některé z
teselačních technik je výpočetně velmi náročná. Proto se tato práce zaměřuje na metody
využívající radiální bázové funkce (RBF), které jsou vhodné pro zpracování velkých
roztroušených dat v n-dimenzionálním prostoru.

RBF metody jsou neseparabilní, jelikož jsou založeny na výpočtu vzdálenosti
mezi dvěma body. Tyto metody vedou na řešení systému lineárních rovnic, který je
v případě použití aproximační metody přeurčený. Jednou z výhod RBF metod oproti
triangulačním metodám je získání analytického popisu daného datasetu. Navíc je v
případě RBF aproximace dosaženo významné komprese dat.

Tato práce je vypracována jako soubor komentovaných odborných článků sepsaných
autorkou práce a jejích spolupracovníků během autorčina doktorského studia. Články
se zaměřují především na výzkum v oblasti RBF aproximace. Příspěvky prezentované
v této práci lze rozdělit do tří vzájemně propojených dílčích oblastí: RBF aproximace s
polynomiální reprodukcí, RBF aproximace pro velká data a RBF aproximace respektu-
jící hlavní rysy dat. Dva z prezentovaných příspěvků byly publikovány v impaktovaných
odborných časopisech, jeden článek je přijat k publikovaní v impaktovaném časopisu a
čtyři příspěvky byly publikovány ve sbornících mezinárodních konferencí. Důležitou
částí této práce je příloha, která obsahuje jednotlivé články v jejich publikované podobě.
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• LH12181 – NECPA - Vývoj algoritmů počítačové grafiky a pro CAD/CAM systémy
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Abstract

A reconstruction of large scattered datasets using interpolation or approximation meth-
ods is often task in many engineering problems. Several techniques have been developed
for data interpolation or approximation, but they usually require an ordered dataset, e.g.
rectangular mesh, structured mesh, unstructured mesh, etc. Nevertheless, the conversion
of a scattered dataset to a semiregular grid using some tessellation techniques is compu-
tationally expensive. Therefore, the thesis is focused to the Radial Basis Function (RBF)
methods which are appropriate for large scattered dataset in n-dimensional space.

The RBF methods are non-separable, as it is based on the distance between two
points. These methods lead to the solution of a linear system of equation which is
overdetermined in the case of the use of some approximation method. Using RBF
methods, the analytical description of the data is obtained which is the one of the
advantages of such methods over the triangulation methods. Moreover, in the case of
RBF approximation methods, the significant compression of the give data is achieved.

The thesis is elaborated as a collection of commented research papers which were
written by the author of this thesis and her collaborators during the author’s doctoral
study. The papers focus mostly on the research in area of the RBF approximation. The
presented contributions are from three interconnected subareas: RBF approximation
with polynomial reproduction, RBF approximation for big data and RBF approximation
respecting features of data. Two of the presented research papers were published in the
impacted international journals, one paper is accepted for journal publication and four
other papers were published in proceedings of international conferences. Therefore,
substantial part forming this thesis is an appendix where the articles are attached.

This dissertation thesis was supported by the following projects:
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Chapter 1

Introduction

Interpolation and approximation are the most frequent operations used in computa-
tional techniques. Several techniques have been developed for data interpolation or
approximation, but an ordered dataset is mostly expected, e.g. a rectangular mesh, a
structured mesh, an unstructured mesh, etc. However, in many engineering problems,
data are not ordered, and they are scattered in n−dimensional space, in general. In fact,
the conversion of a scattered dataset to a semi-regular grid is commonly performed in
technical applications using some tessellation techniques. However, this approach is
quite prohibitive for the case of n−dimensional data due to the computational cost.

Interesting techniques are based on the Radial Basis Function (RBF) method which
was originally introduced by [Har71], [Har90] and it is a traditional and powerful tool
for the meshless interpolation and approximation of scattered data. These meshless tech-
niques do not require conversion to a semi-regular grid. A good introduction to RBFs is
given by [Buh03]. RBF techniques are widely used across many fields solving technical
and non-technical problems. RBF techniques are effective tools for solving partial dif-
ferential equations in engineering and sciences [ECS19], [HSfY15], [LCC13], [Isk04].
RBF applications can be found in fuzzy systems, pattern recognition, data visualization
[PRF14], medical applications, surface reconstruction [CLZ+18], [SS18], [IdSPT14],
[SPN14], [SPN13], [PS11a], [PS11b], [KHS03], [TO02], [DTS02], [CBC+01], scalar
and vector fields visualization [SS17], [SSM18], [SSM19], reconstruction of corrupted
images [US05], [ZVS09], etc. The RBF techniques are really meshless and are based
on collocation in a set of scattered nodes. These methods are independent with respect
to the dimension of the space and lead to the solution of linear system of equations. The
computational cost of RBF approximation increases nonlinearly (almost cubic) with the
number of points in the given dataset, and linearly with the dimensionality of data. The
RBF techniques express the given data using analytical description. Moreover, RBF
approximation allows to attain significant compression of the data. It should be noted
that the methods for surface reconstruction can be divided into two groups in terms
of type of mathematical representation. The first group are RBF methods which lead
to the explicit surface representation, i.e. f (𝑥i) = hi is solved. The second group of
RBF methods leads to implicit representation of surface, i.e. F(𝑥i) = 0 is solved,which
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is more difficult because some other constraints have to be added. Therefore, several
generalized radial basis function methods which are based on processing of Hermite
data, i.e. set of points with their normals, have been developed and were presented in
[ZWB19], [BG13], [GTBM13], [MGV11], [MGV09], [PMW09].

Of course, there are other meshless techniques such as discrete smooth interpolation
(DSI) [Mal89], kriging [RV84], [MRW+14], [Cre15], which is based on statistical
models that include autocorrelation, etc.

The processed point clouds are mostly created by 3D scanner, and they contain
very large amount of points. Moreover, points in the cloud may not be uniformly
distributed, and the holes can be formed. Therefore, it is necessary to develop the
methods which are fast and able to reconstruct corrupted datasets [OBS06], [OBS05],
[TRS04], [OBA+03], etc. for mathematical representation of surface. It is possible
to obtain further acceleration of calculation using high performance computing, such
approaches are introduced e.g. in [TGB14] and [CGGS13]. The processing of large
amount of points is discussed and solved in [Ska17b] and [Ska17a].

The RBF approximation is generally faster than the RBF interpolation, but the larger
errors and inaccuracies are produced. To solve such problems, the modified, robust
moving least square method was presented in [JCW+15].

As mentioned above, RBF methods lead to the solution of a linear system of the size
equal to the number of data points, further, current 3D data scanners allow acquisition
of tens of millions points, thus, there is also an important task to find appropriate data
structures for storing the point clouds, reconstructed surfaces and representation of
matrix of the linear system. There are many publications [SMP+15], [Law13], [LK11],
[Šim09], [BG09], [SHK09] [LD08], [BG08], [LZ06], [Mas03] etc. in which introduce
a description of several useful data structures.

Another important factor playing a significant role in terms of the quality of approx-
imation and the compression ratio is the good placement of the reference points (i.e.
centers of the RBFs) for RBF approximation. The mentioned requirement is fulfilled
for placement along significant features of the given dataset. For example, when the
geographic data is to be approximated, placement along features such as ridges, peaks,
valleys etc. leads to better approximation results.

Further, choice of an appropriate shape parameter of RBFs is extremely important
to ensure good approximation. Various authors have focused their research on finding
optimal values of the shape parameter for RBFs. Several articles have been dedicated to
introducing different algorithms to compute a constant value as an appropriate value for
the shape parameter [FZ07], [Fra82], [GIS12], [HLC07], [Rip99], [Sch11]. Many of
these focus on finding the minimal error in computations or are based on convergence
analysis. Other articles show that variable shape parameters are useful instead of a
fixed shape parameter. Sufficient conditions to guarantee a unique solution of the RBF
interpolation with variable shape parameters are derived in [ZW15] for CS-RBFs and in
[BLRS15], [BLRS04] for global RBFs. The variable shape parameters are possible to
determine using a genetic algorithm [AE15] and minimization of the local cost function
[SS13], [BLS02] or numerically by minimizing the root-mean-square errors [KC92].
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Other approaches generate the variable shape parameters from an estimated range
when different distributions of values are used [BH16], [Ran15], [SS09] or use Neural
Network RBF approach [XYX+19], [AHJ19c], [Mar19]. However, the approaches
mentioned do not reflect features of the given data.

Multiscale RBFs for solving elliptic partial differential equations and distinction
between multiscale approximation spaces and multilevel approximation schemes are
discussed in [Wen18]. The partition of unity (PU) method which enables to select
appropriate size of the different PU subdomains and the suitable shape parameter used
to fit the local problems is presented in [CDRP18].

This chapter contains the brief introduce to radial basis functions and the RBF
approximation and the summary of thesis goals. Other chapters are organized as
follows. Chapter 2 presents an overview of contributions of the papers attached with
the thesis. Chapter 3 provides a summary of the research and presents a future work
and Appendix A contains the project assignments and other activities of author. Finally,
the reprints of the research papers, forming the most important part of the thesis, are
provided in appendices.

1.1 Radial Basis Function (RBF)
Radial basis functions (RBFs) are traditional and powerful tools for the meshless
interpolation and approximation of scattered data. These functions are real-valued
functions which depend only on the distance from the fixed center point. More precisely,
let us consider an univariate function:

φ : [0,∞)→ R (1.1)

then the radial basis function Φi : Rd → R is defined as:

Φi(𝑥) = φ(ri) = φ(‖𝑥 − 𝑥i‖), (1.2)

where {𝑥i}
N
i=1 ⊂ R

d is a set of N different points which are so-called the centers and ‖.‖
is some norm in Rd. The Euclidean norm is usually used.

Name of RBF (specifically word radial) is based on the following property. The
value of Φ at any point at a certain fixed distance from the fixed center point is constant,
i.e.

‖𝑥1‖ = ‖𝑥2‖ ⇒ Φ(𝑥1) = Φ(𝑥2), 𝑥1,𝑥2 ∈ R
d. (1.3)

Thus, Φ is radially (or spherically) symmetric around its center. Example of a such
function can be seen in Figure 1.1.

Nice property of RBF interpolants is invariance for all Euclidean transformations
(i.e. translations, rotations and reflections). This means that it does not matter whether
we first compute the RBF interpolant and then apply a Euclidean transformations, or if
the transform of the data is performed first and then compute the interpolant. This is a
consequence of fact that Euclidean transformations are 2-norm-invariant.
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Figure 1.1: Example of RBF

Table 1.1: Typical examples of global RBFs

Global RBF φ(r)

Gaussian function [Sch79] e−(αr)2

Inverse Quadric (IQ) 1
1+(αr)2

Inverse Multiquadric (IMQ) 1√
1+(αr)2

Multiquadric (MQ)
√︀

1 + (αr)2

Thin-Plate Spline (TPS) [Duc77] r2log(r)

There are two main groups of basis functions: global RBFs [Duc77], [Sch79]
and “local” Compactly Supported RBFs (CS-RBFs) [Wen06]. Fitting scattered data
with CS-RBFs leads to a simpler and faster computation, because a system of linear
equations has a sparse matrix. However, an approximation using CS-RBFs is quite
sensitive to the density of the approximated scattered data. Global RBFs lead to a linear
system of equations with a dense and ill-conditioned matrix and their usage is based
on sophisticated techniques such as the fast multipole method [Dar00]. Global RBFs
are useful in repairing incomplete datasets and they are significantly less sensitive to
the density of approximated data as they cover the whole domain. Typical examples
of global RBFs are presented in Table 1.1. It should be noted that Gaussian function,
inverse quadric and inverse multiquadric are monotonically decreased with increasing
radius r, strictly positive definite, infinitely differentiable and convergent to zero. The
multiquadric is monotonically increased with increasing radius r, infinitely differentiable
and divergent as radius increases. The last popular global RBF is thin plate spline (TPS)
which is shape parameter free and divergent as radius increases. TPS has a singularity at
the origin which is removable for the function and its first derivative but this singularity
is not removable for the second derivative of TPS. Examples of “local” Wendland’s
CS-RBFs are presented in Table 1.2. Note that the notation (1 − αr)q

+ means:

(1 − αr)q
+ =

⎧⎪⎪⎨⎪⎪⎩(1 − αr)q if 0 ≤ αr ≤ 1
0 if αr > 1

(1.4)
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where q presents some exponent and α is a shape parameter. Figure 1.2 shows behavior
of selected Wendland’s CS-RBFs for shape parameter α = 1; on the x axis is a radius
value r (negative part is just for illustration of the symmetry properties).

Table 1.2: Typical examples of “local” Wendland’s CS-RBFs φd,s [Wen95]. Wendland’s
functions are univariate polynomial of degree ⌊d/2⌋ + 3s + 1, they are always positive
definite up to a maximal space dimension d and their smoothness is 𝒞2s. For more
details see Chapter 11.2 in [Fas07].

ID CS-RBF φ(r)
1 Wendland’s φ1,0 (1 − αr)+

2 Wendland’s φ1,1 (1 − αr)3
+(3αr + 1)

3 Wendland’s φ1,2 (1 − αr)5
+(8(αr)2 + 5αr + 1)

4 Wendland’s φ3,0 (1 − αr)2
+

5 Wendland’s φ3,1 (1 − αr)4
+(4αr + 1)

6 Wendland’s φ3,2 (1 − αr)6
+(35(αr)2 + 18αr + 3)

7 Wendland’s φ3,3 (1 − αr)8
+(32(αr)3 + 25(αr)2 + 8αr + 1)

8 Wendland’s φ5,0 (1 − αr)3
+

9 Wendland’s φ5,1 (1 − αr)5
+(5αr + 1)

10 Wendland’s φ5,2 (1 − αr)7
+(16(αr)2 + 7αr + 1)

Figure 1.2: Geometrical properties of CS-RBFs [Ska13]
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1.2 RBF Approximation
In this section, the RBF approximation method, which was recently introduced in
[Ska13], and its properties are decribed.

For simplicity, we assume that we have an unordered dataset {𝑥i}
N
1 in E2. However,

note that this approach is generally applicable for d-dimensional space. Further, each
point 𝑥i from the dataset is associated with vector ℎi ∈ E

p of the given values, where p
is the dimension of the vector, or scalar value hi ∈ E

1. For an explanation of the RBF
approximation, let us consider the case when each point 𝑥i is associated with scalar
value hi, e.g. a 2 1/2 D surface. Let us introduce a set of new reference points {ξ j}

M
1 , see

Figure 1.3.

Given points x
New reference points ξ

Figure 1.3: RBF approximation and reduction of points.

These reference points may not necessarily be in a uniform grid. It is appropriate
that their placement reflects the given surface (e.g. the terrain profile, etc.) as well as
possible. The number of added reference points ξ j is M, where M ≪ N. The RBF
approximation is based on computing the distance of given point 𝑥i and reference point
ξ j.

The goal of the RBF approximation is to approximate the given dataset by function:

f (𝑥) =

M∑︁
j=1

c jφ(r j) =

M∑︁
j=1

c jφ(‖𝑥 − ξ j‖), (1.5)

where the approximating function f (𝑥) is represented as a sum of M RBFs, each
associated with a different reference point ξ j, and weighted by an appropriate coefficient
c j.

It can be seen that we get an overdetermined linear system of equations for the given
dataset:

hi = f (𝑥i) =

M∑︁
j=1

c jφ(‖𝑥i − ξ j‖) =

M∑︁
j=1

c jφi, j i = 1, . . . ,N. (1.6)

The linear system of equations (1.6) can be represented as the matrix equation:

𝐴𝑐 = ℎ, (1.7)
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where the number of rows is N ≫ M and M is the number of unknown weights
[c1, . . . , cM]T , i.e. the number of reference points. (1.7) can be expressed in the form:⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

φ1,1 · · · φ1,M
...

. . .
...

φi,1 · · · φi,M
...

. . .
...

φN,1 · · · φN,M

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

c1
...

cM

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

h1
...
hi
...

hN

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (1.8)

Thus, the presented system is overdetermined, i.e. the number of equations N is higher
than number of variables M. This linear system of equations can be solved by the least
squares method (LSE), QR decomposition etc.

Finally, it should be noted that if the set of reference points is the same as the set of
given points, then the problem solving is called the RBF interpolation.

1.3 Problem Definition
This thesis aims to improve the RBF approximation in terms of its stability, solvability,
accuracy and compression ratio. For these purposes, the thesis is focused on three
interconnected subareas.

The RBF approximation as defined in Section 1.2 can theoretically have problems
with stability and solvability. Therefore, the RBF approximant (1.5) is usually extended
by polynomial function of degree k. Such RBF approximation is called as the RBF
approximation with polynomial reproduction and was introduced by Fasshauer [Fas07].
However, this thesis proves that the mentioned approach causes the inconsistency in the
computation and, therefore, the new approach is formulated, clarified and verified. This
is the subject of the first subarea that the thesis deals.

The second subarea of this thesis is focused on processing of big scattered data
using the RBF approximation. It is very important aspect which has to be considered
and solved including the usage of appropriate data structures because as mentioned
above, the real data contains tens of millions scattered points.

Finally, the last subarea of the thesis is aimed to improve the quality of the RBF
approximation in terms of error and its compression ratio. The main role which affects
the results of the RBF approximation is the setting of the shape parameter and the
placement of the reference points. Therefore, the last part is focused on these aspects.
Moreover, the thesis also deals with the use of the constant shape parameter versus
adaptive shape parameter.
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Chapter 2

Overview of Contributions

This chapter summarizes main contributions of the work collected in this thesis. The
overview is structured into three main sections addressing contributions in the areas of
the RBF approximation with polynomial reproduction, the RBF approximation for big
data and the RBF approximation respecting features of data.

2.1 RBF Approximation with Polynomial Reproduction
The thesis presents a new approach for the RBF approximation with polynomial repro-
duction. Moreover, an extensive comparative study of proposed approach with other
RBF approximation methods is provided.

2.1.1 A New Radial Basis Function Approximation with Reproduc-
tion

Appendix B (paper [MS16a]) presents the new algorithm for the RBF approximation
with polynomial reproduction and its mathematical derivation. The classical RBF
approximation which was introduced in Section 1.2 can theoretically have problems
with stability and solvability. Therefore, the RBF approximant (1.5) is usually extended
by polynomial function Pk(𝑥) of degree k, i.e.:

f (𝑥) =

M∑︁
j=1

c jφ(‖𝑥 − ξ j‖) + Pk(𝑥). (2.1)

The original approach of the RBF approximation with polynomial reproduction was
introduced by Fasshauer [Fas07] (Chapter 19.4). However, this original approach ap-
plies the additional conditions to the polynomial part and the inconsistency is caused by
these conditions. Therefore, the mentioned RBF approximation with the polynomial
reproduction is inconveniently formulated as it mixes variables which have a different
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physical meaning. Thus, the new approach for the RBF approximation with polyno-
mial reproduction which eliminates the mentioned inconsistency was proposed. The
proposed approach is based on the solution of an optimization problem consists of the
minimizing the square of error for the approximating function. The experiments prove
that the proposed approach is correct and gives significantly better and more stable
results than the original method.

2.1.2 Radial Basis Function Approximations: Comparison and Ap-
plications

In Appendix C (paper [MS17b]), several existing RBF approximation methods are
briefly introduced and their mutually comparison with respect to various criteria is
provided. As RBF approximation methods important for comparison, the proposed RBF
approximation with reproduction (described in detailed in Appendix B), the classical
RBF approximation which was introduced in Section 1.2 and the RBF approximation
using Lagrange multipliers introduced by Fasshauer [Fas07] (Chapter 19) have been
used. The main emphasis of this comparative study is put on the stability and accuracy
of computation. The mentioned methods have been tested on synthetic and real datasets.
Moreover, different global radial basis functions, different distributions of reference
points and different placement of the dataset in the domain have been used for purposes
of comparison.

From the results, it follows that the classical RBF approximation gives the best
results due to the smallest error. Nevertheless, the proposed RBF approximation with
linear reproduction returns very similar results and the difference in errors compared
to the classical RBF approximation in not very significant. Further, the proposed RBF
approximation with linear reproduction can be influenced by placement of the given
dataset in the space, and therefore, it is appropriate to perform the translation of the
estimated center of gravity to the origin of the coordinate system. For all experiments,
the worst results according to error were obtained by the RBF approximation using
Lagrange multipliers. Moreover, this method has unpredictable behavior and is mostly
ill-conditioned. The experiments also proved that the classical RBF approximation
and the RBF approximation with reproduction offer a significant data compression.
On the other hand, experiments made proved that all methods have problem with the
preservation of sharp edges if global RBFs are used.

2.1.3 Summary of Achieved Results
In this section, it will be discussed which significant conclusions can be drawn from
our research in the area of the RBF approximation with polynomial reproduction and
the related extensive comparative study.

The new algorithm for the RBF approximation with polynomial reproduction and
its mathematical derivation was proposed. In comparison with the original approach of
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the RBF approximation with polynomial reproduction (see [Fas07] (Chapter 19.4)), the
proposed approach has following advantages and properties. The proposed approach
does not contain the definition of the additional conditions, and therefore, the inconsis-
tency which causes the mixing variables with a different physical meaning is eliminated.
The maximum magnitude of error for the original approach is approximately two times
greater that the maximum magnitude of error for the proposed approach. The quality of
the RBF approximation in terms of error is better for the proposed approach than for
the original approach. When the TPS is used, the quality of the result in terms of error
is improved very significant. The proposed approach is easily extendable for general
polynomial reproduction and for higher dimensionality.

The comparative study is shown that the numerical stability of the RBF approxima-
tion with reproduction can be influenced by placement of the given dataset in space due
to large span of the elements in the approximation matrix. Therefore, it is appropriate
to apply the translation of the estimated center of gravity to the origin of the coordinate
system. Further, it is obvious that the RBF approximation using Lagrange multipliers
(see [Fas07] (Chapter 19)) has unpredictable behavior, returns the worst results in terms
of error, the matrix for this method is mostly ill-conditioned and its size is high. In
terms of global RBFs used, following properties was observed. The Gaussian function
has the biggest problems with the preservation of the sharp edges. The Thin-Plate
Spline (TPS) is inappropriate for approximation of the synthetic data, on the other hand
for real geographic data, it has the advantage that is shape parameter free. In terms
of the number and distribution of reference points, it can be concluded that the RBF
approximation has problem with the excessive data ordering of the reference points such
as points with the uniform distribution. Further, with increasing number of reference
points relative to the number of points in the given dataset, the details of the surface
are progressively apparent. Moreover, if the number of the reference points is about
tenth of the number of approximated points (i.e. M ≈ 0.1 · N), the mean relative error
is smaller than 1%.

2.2 RBF Approximation for Big Data
In practice, real data contain a large number of scattered points which results in high
memory requirements for determining their approximation. Therefore, the thesis
presents a new method which was proposed for the RBF approximation of big data.
Moreover, a modification of this method when the CS-RBFs are used, i.e. the sparse
matrix is obtained, have been formulated.

2.2.1 A Radial Basis Function Approximation for Large Dataset
The RBF approximation of big datasets is solved in Appendix D (paper [MS16b]). The
RBF approximation leads to the solution of overdetermined linear system of equation
(1.8), how it was described in Section 1.2. A large number of points in dataset results
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into large matrix of the overdetermined linear system of equation and, therefore, there
are the high memory requirements for storing this matrix. Unfortunately, the capacity
of RAM memory is limited. Thus, the computation of the RBF approximation would be
unbearable computationally expensive due to memory swapping, etc. The new approach
for determination of the RBF approximation for such big data was proposed.

The proposed approach is based on the least squares method (LSE) for the solution
of the overdetermined linear system of equation, as it was introduced in Section 1.2. For
this method a square symmetric matrix, which has a much smaller size than the matrix
of linear system, is obtained. Moreover, the determination of each element of such
matrix is separable. From the described properties, it follows that the block operations
with matrices can be used to save memory requirements and to prevent data bus (PCI)
overloading. Futher, due to symmetry of matrix, only upper triangle of the matrix for
LSE can be computed, see Figure 2.1. The effectiveness of the proposed procedure is
supported by performed experiments.

Figure 2.1: M × M square LSE matrix which is partitioned into MB × MB blocks. The
color red is used to denote the main diagonal of the matrix and illustrates the symmetry
of the matrix. The color green is used to denote the blocks which have to be computed.

2.2.2 Big Geo Data Surface Approximation using Radial Basis Func-
tion: A Comparative Study

Appendix E (paper [MS17a]) focuses on the RBF approximation for big data when
the “local” CS-RBFs are used. Moreover, the comparative study is elaborated for this
group of basis functions. The proposed approach is the modification of method which is
based on partitioning the matrix into blocks and is introduced in Appendix D. It should
be noted that the size of block used for the proposed method significantly influences
the time performance. If the matrix for LSE is partitioned into small blocks, then
the time performance is large due to overhead costs and, moreover, each element of
approximation matrix (1.7) has to be calculated more times than for larger size of block.
On the other hand, the time performance exceeds the permissible limit for too very
large blocks due to memory swapping. Therefore, it is necessary to choose the size of
blocks close to optimum.
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The modification of previous method, which is described in this contribution,
consists in the fact that application of “local” CS-RBFs leads to the sparse matrix for the
overdetermined linear system of equations. Therefore, when the special data structures
are used for storage of the sparse approximation matrix, then the optimal size of block
is much larger than for the classical representation of the matrix. For our purpose, the
coordinate (COO) format is most suitable. Moreover, it is evident that we do not want to
compute the elements for all pairs of points when CS-RBFs are used, and therefore, the
kd-tree is used for computing the elements of the approximation matrix. The efficiency
of the proposed method is again supported by performed experiments.

2.2.3 Summary of Achieved Results
The significant conclusions of the research in the area of the RBF approximation for
big data and advantages and disadvantages of proposed algorithms will be discussed in
this section. For purposes of the RBF approximation of the big data, the block-wise
approach preventing memory swapping was proposed. The mentioned approach is
based on the use of the symmetry of the matrix and partitioning the matrix into blocks,
which enables the computation on systems with limited main memory. It should be
noted that the efficiency of the proposed approach is strongly dependent on the choice of
size of blocks. When the size of block is too small, the time performance is large due to
overhead costs. On the other hand, when the size of blocks is too large, the running time
begins to rise above the permissible limit due to memory swapping. Therefore, when
the “local” CS-RBFs are used (i.e. the sparse matrix is obtained for the overdetermined
linear system of equations), the data structures for storage of the sparse matrix can
be used and the larger size of blocks can be chosen. This leads as already mentioned
to decrease the computational costs. The disadvantage of the proposed approach is
dependency on the usage of the least square error method (LSE) which causes worse
conditionality of the problem.

Further, during the testing of the proposed approach, following properties and
relations have been detected. The RBF methods have problems with the accuracy of
computation on the boundary of an object, which is a well-known property. Moreover,
the magnitude of error for the RBF approximation is influenced by the presence of
a noise in the given dataset. Further, when the input dataset is uniformly distributed
within a given area, the “local” CS-RBFs return the better results in terms of the error
than the global RBFs. This is caused by fact that global RBFs affect the entire domain of
the given datasets, which is usually undesirable behavior. The “local” Wendland’s φ3,0

basis function forms sharp undesirable peaks for some types of input data in comparison
with other “local” CS-RBFs. The value of constant shape parameter α is depending on
the range and number of points of the given dataset.

The results of experiments also proved that the RBF approximation with linear
reproduction returns considerably better results in terms of the deviation of error and
slightly better results in terms of the mean error than the RBF approximation without
polynomial reproduction, particularly if the range of associated values is large.
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2.3 RBF Approximation Respecting Features of Data
As already mentioned above, the good placement of the centers of the RBFs and the
choice of the appropriate shape parameter for the RBF approximation has an important
role to ensure the good quality of approximation and to attain the significant compression
of data. For fulfillment of mentioned requirements, the significant features of the given
dataset should be given into account. Therefore, the contributions described in this
section are focused on use of these significant features for the RBF approximation.

2.3.1 Algorithm for Placement of Reference Points and Choice of
an Appropriate Variable Shape Parameter for the RBF Ap-
proximation

Two significant aspects which have an influence on the quality of the RBF approxima-
tion are determination of the shape parameter and the placement of reference points.
Nevertheless, mainly the determination of the optimal shape parameter is difficult
problem which is in the majority of cases set up experimentally or using some ad-hoc
method. Therefore, a novel algorithm for finding an appropriate set of reference points
(i.e. centers of the RBFs) and a variable shape parameter selection for the RBF approx-
imation in E2 is presented in Appendix F (paper [MSS]). The proposed approach is
two-steps and exploits features of the given data such as inflection points and extrema.
Determination of the appropriate shape parameter is based on the first curvature of
curve.

The briefly summary of the whole proposed algorithm is as follows. As already
mentioned, the proposed approach has two steps. The main task of the first step is to
perform the primary RBF approximation of the given data so that the associated values
will be symmetrically distributed around the x-axis, which leads to the elimination of
the problematic course of the sampled function, see Figure 2.2. For these purposes,
the inflection points (stationary and non-stationary) and endpoints of the given dataset
are TPS (global RBF) interpolated, see Figure 2.3, and an adaptive shift of the given
data in terms of associated values is performed. It should be noted that the method for
finding significant points of the given dataset (stationary inflection points, non-stationary
inflection points, extrema) has to be chosen, because the sampling function for the given

x0

h

Figure 2.2: The course of the sampled function which is poorly approximated by the
RBFs.
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Figure 2.3: Original function and the TPS interpolation for selected significant points
(result of the 1st step of our approach).
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(a) Four points {𝑥i, . . . ,𝑥i+3} from the dataset
interpolated by cubic curve and three signifi-
cant points {𝑤t} of this curve. The points added
to the set of suspicious points (red squares), a
point discarded (gray triangle).

h

x

Local extrema
Points for TPS interpolation from 1st pass

(b) Course of the input sampled function for
the second step of the proposed approach. The
set of reference points for the second step of
our approach are marked.

Figure 2.4: Finding significant points of given data.

data is not known. In Appendix F, the method based on piecewise interpolation by a
cubic curve was proposed and the four points is used in every step of this piecewise
method, see Figure 2.4a.

In the second step of the proposed approach, the RBF approximation with a variable
shape parameter and Lagrange multipliers is performed on modified data. The reference
points, including the absolute values of the first curvatures in them, are derived using
significant points of the shifted data, see Figure 2.4b. For these purposes, the piecewise
interpolation by a cubic curve is again uses. After that, the appropriate variable shape
parameters are computed according to the the absolute values of the first curvatures at
the corresponding reference points. The constraints for the Lagrange multipliers are
defined so that the associated values at endpoints are strictly respected. Finally, the
approximated value is determined as a sum of the TPS interpolation resulting from the
first step of algorithm and the RBF approximation from the second step of the proposed
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algorithm:

f (𝑥) =

M1∑︁
v=1

cIvφT PS (‖𝑥 − 𝑥̂v‖) + P(𝑥) +

M∑︁
j=1

c jφ
(︁
‖𝑥 − 𝜉 j‖, α j

)︁
, (2.2)

where 𝑐I = (cI1, . . . , cIM1) is the vector of weights for the TPS interpolation, φT PS

is the Thin-Plate-Spline, {𝑥̂v}
M1
1 are input points for the TPS interpolation, P(𝑥) is

polynomial function of first order, 𝑐 = (c1, . . . , cM) is the vector of weights for the RBF
approximation, φ is the RBF used, {𝜉 j}

M
1 is the set of reference points and {α j}

M
1 are

appropriate variable shape parameters.
From the experiments, it follows that the proposed approach gives significantly

better results over other relevant competing methods. It is also apparent that if the
features of the given data are not respected, the RBF approximation is not capable of
competing with the RBF approximation respecting features of the data, especially when
the number of reference points is too small.

2.3.2 Determination of Stationary Points and Their Bindings in
Dataset Using RBF Methods

As already mentioned several times, the placement of reference points with respect to
the significant features of the given dataset has an important influence on the result
of the RBF approximation. For determination of such significant features of data, the
knowledge of stationary points is necessary. However, the given dataset describes the
surface for which a sampling function is not known. Therefore, Appendix G (paper
[MSS19a]) presents a new algorithm for determining the set of stationary points without
knowledge of the sampling function. Moreover, an approach for detecting the bindings
between these stationary points (such as stationary points lie on line segment, circle,
etc.) is proposed. The knowledge of binding can be appropriate for pruning the subset
of related stationary points to the required number of points on the given curve of
stationary points. The piecewise RBF interpolation is used during the execution of the
algorithm for the determining stationary points of the given dataset.

The main idea of the proposed algorithm is as follows. The all points in the
domain are divided into cells, see Figure 2.5a. After that, for the each 3 × 3 cells
(grey area in Figure 2.5a), the RBF interpolation is computed and the stationary points
of this interpolating function are determined for the restricted domain (hatched area
in Figure 2.5a). Finally, the reduction of the set of stationary points is performed to
eliminate identical points or points very close to identical that results from obtaining a
stationary point from more RBF interpolations, see Figure 2.5b.

The surface represented by given dataset does not contain only isolated stationary
points, but the curves of stationary points such as line segments, circles or some
other shapes, can lie on the surface. Therefore, the method of detecting the bindings
between stationary points which is based on the kd-tree is proposed. Moreover, in the
contribution, the derivation of maximal possible distance of two stationary points for
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(a) The grey area shows the area of all points
from the given dataset which are interpolated by
the RBF method during one step of piecewise ap-
proach. The hatched area illustrates the domain for
which the stationary points of the given dataset are
determined from the obtained RBF interpolation.

(b) Visualization of the stationary points reduction
which is performed if the two points are identical
or very close to identical. The green circle and
red circle mark the stationary points which were
determined from two different RBF interpolations
and which were merged to one stationary point
marked by yellow square.

Figure 2.5: Proposed piecewise approach

which these stationary points still lie on the same curve is done. The correctness of the
proposed algorithm is proved by performed experiments.

2.3.3 Incremental Meshfree Approximation of Real Geographic
Data

In Appendix H (paper [MSS19b]), a new incremental algorithm for the RBF approxi-
mation of geographic data that puts the emphasis on good placement of reference points
and significantly improves the compression ratio is described. The good placement of
reference points for geographic datasets is along features such as ridges, peaks, valleys,
etc. Therefore, in the first level, a Gaussian low-pass filter is applied to the given dataset
due to elimination of insignificant terrain roughness and the set of stationary points
obtained for such filtered data using approach described in Appendix G is used as
initial set of reference points. Moreover, this set of reference points is extended by
the corners of the bounding box of dataset. It is performed due to avoiding problems
on the boundary. After that, the RBF approximation is computed and the residues are
determined. In every following level, the set of stationary points for the filtered residues
is determined using method described in Appendix G and only local maxima are added
to the set of reference points. The RBF approximation is again computed and new
residues are determined. The whole process is repeated until the stop conditions are
met.

From the experiments, it follows that the quality of the RBF approximation is
improving with increasing level of the algorithm. For higher levels, the many details of
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the original terrain is already apparent. Moreover, the proposed approach achieves the
improvement of results in comparison with other existing methods due to respecting
features of the given data.

2.3.4 Summary of Achieved Results
This section is focused on the summary of relevant conclusions obtained from the
research in the area of the RBF approximation respecting features of data. As first,
the properties and relations of the proposed two-steps RBF approximation with the
variable and adaptive shape parameter in E2 will be described. The proposed approach
exploits significant features of the given data to determine reference points and related
shape parameters. The experiments proved that the quality of results in terms of error is
better for the proposed approach than for other relevant competing methods. Moreover,
the RBF approximation for which features of the given data are not respected is not
capable of competing with the proposed approach which reflects the features of the
given data, especially when the number of reference points is small. This also follows
that better compression ratio is obtained for the proposed approach when the mean
error of the approximation is fixed. For the real data, the proposed approach can well
approximate the global trend of given data for a small set of reference points. The
proposed algorithm can be used for the RBF approximation of data describing a curve
which is parameterized by one variable in multidimensional space, e.g. a robot path
planning, etc. The proposed method also significantly eliminates problems with a shape
parameter estimation inherited from the RBF’s general properties.

Further, the new incremental approach for the RBF approximation which is based
on the determination of stationary points of the input points cloud in the first level and
the finding local maxima of residues at each hierarchical level was developed. For
purposes of determination such significant points, the new algorithm which is able
to determine the stationary points of given sampled surface without knowledge of
the sampling function was proposed. This algorithm is based on the piecewise RBF
interpolation and, moreover, includes method of detecting the binding between the
found points, i.e. associate the points from the same curve. It should be noted that
for real data, it is appropriate to filter the given data using a Gaussian low-pass filter
before determination of their stationary points. The main reason for filtration of data is
a elimination of insignificant stationary points which can cause decline of compression
ratio without some benefit for further processing. The proposed incremental RBF
approximation achieves the improvement of results in comparison with other existing
competing methods when the ratio between number of reference points and number of
input points is kept because the features of the given dataset are respected. Moreover,
from performed experiments, it was observed that when the approximated data contains
some ridges or valleys, the several reference points have to be placement along this
data characteristic. Otherwise, such features could be approximated by several peaks or
holes.
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Chapter 3

Summary and Future Work

This thesis presents issues of the approximation of scattered geometric datasets. For
these purposes, the RBF approximation is considered and its improving in terms of
different criteria is discussed and solved. The most important part of the thesis is the
collection of author’s papers. The thesis addresses a variety of different aspects of the
RBF approximation: its advantages and disadvantages, stability, solvability, accuracy,
compression ratio etc. As shown in the thesis, the RBF approximation provides solution
which leads to a significant compression of the given geometric data and the analytical
formula is obtained for description of the data. Moreover, the RBF approximation
does not require some type of data ordering and, therefore, it is a convenient technique,
especially for engineering applications, where the non-linear approximation of data is
needed and the large amount of data has to be processed.

The thesis presents several new or modified approaches for the RBF approximation
which can be divided to three interconnected subareas. The first subarea is focused to the
RBF approximation with reproduction which deals the problems with the stability and
solvability of the RBF methods. The algorithm presented in this thesis (see Appendix B
and Appendix C) eliminates the inconsistency which occurs in the original approach
introduced by Fasshauer [Fas07]. In the thesis, it was proved that the inconsistency is
caused by adding additional conditions. Therefore, the new approach was proposed and
verified.

The second subarea is dealt with the processing of the big data using the RBF
approximation. For these purposes, the block-wise algorithm for the RBF approximation
(see Appendix D), which uses the symmetry of the matrix, was proposed. Moreover,
for the CS-RBFs, its modification (see Appendix E) based on the sparse data structures
and kd− tree was defined.

Finally, the last subarea is focused on the improving of the quality of the RBF
approximation and the compression ratio. This is closely related to the placement of
reference points and the selection of the shape parameter. The novel algorithm for
finding an appropriate set of reference points and a variable shape parameter selection
for the RBF approximation in E2 was developed (see Appendix F). The determination of
reference points is based on finding the significant features such as extrema, inflection
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points etc. The variable shape parameters are derived using the first curvature of curve.
Further, the incremental RBF approximation for geographic datasets was proposed (see
Appendix H). In this case, the reference points are selected based on the determination
of stationary points of filtered residues at each hierarchical level. For these purposes, the
algorithm for determination of stationary points of the given dataset without knowledge
the sampling function based on the piecewise RBF interpolation was developed (see
Appendix G).

Still, there is a lot of space for future work, mainly in terms of improving the
quality of the RBF approximation and increasing the compression ratio. Generally,
the RBF methods have problem with the accuracy of computation on the boundary
of an approximated object. The preservation of sharp edges is also problematic but
appropriate placement of the reference points along the significant features of the given
data leads to a partial improvement of this problem. Further, the error of the RBF
methods is influenced by the presence of a noise in the input data, thus, there is a
space for development in terms of lower sensitivity to noise. The question also remains
whether optimal shape parameter can be derived empirically and ideally adaptively for
the higher dimension of space. Another task possible to solve is additional development
in the area of processing of big data so that the least square error method (LSE) will not
need to be used because this method leads to worse conditionality of the problem.
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WITH REPRODUCTION 
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Univerzitni 8, CZ 30614 Plzen, Czech Republic  

ABSTRACT 

Approximation of scattered geometric data is often a task in many engineering problems. The Radial Basis Function 
(RBF) approximation is appropriate for large scattered (unordered) datasets in �-dimensional space. This method is 
useful for a higher dimension � � �, because the other methods require a conversion of a scattered dataset to a 
semi-regular mesh using some tessellation techniques, which is computationally expensive. The RBF approximation is 
non-separable, as it is based on a distance of two points. It leads to a solution of overdetermined Linear System of 
Equations (LSE).  
In this paper a new RBF approximation method is derived and presented. The presented approach is applicable for 
�-dimensional cases in general. 

KEYWORDS 

Radial basis function; RBF; approximation; optimization problem; linear reproduction 

1. INTRODUCTION

Radial Basis Functions (RBFs) are widely used across many fields solving technical and non-technical 
problems. The RBF method was originally introduced by [Hardy, R.L., 1971] and it is an effective tool for 
solving partial differential equations in engineering and sciences. Moreover, RBF applications can be found 
in neural networks, fuzzy systems, pattern recognition, data visualization, medical applications, surface 
reconstruction [Carr, J.C. et al, 2001], [Turk,�G.�and�O’Brien,� J.F.,�2002],� [Pan, R. and Skala, V., 2011a], 
[Pan, R. and Skala, V., 2011b], [Skala, V. et al, 2013], [Skala, V. et al, 2014], reconstruction of corrupted 
images [Uhlir, K. and Skala, V., 2005], [Zapletal, J. et al, 2009], etc. The RBF approximation technique is 
really meshless and is based on collocation in a set of scattered nodes. This method is independent with 
respect to the dimension of the space. The computational cost of RBF approximation increases nonlinearly 
with the number of points in the given dataset and linearly with the dimensionality of data. 

There are two main groups of basis functions: global RBFs (e.g. [Duchon, J., 1977], [Schagen, I.P, 1979])
and Compactly Supported RBFs (CS-RBFs) [Wendland, H., 2006]. Fitting scattered data with CS-RBFs 
leads to a simpler and faster computation, because the system of linear equations has a sparse matrix. 
However, approximation using CS-RBFs is sensitive to the density of approximated scattered data and to the 
choice of a “shape” parameter. Global RBFs lead to a linear system of equations with a dense matrix and 
their usage is based on sophisticated techniques such as the fast multipole method [Darve, E., 2000]. Global 
RBFs are useful in repairing incomplete datasets and they are significantly less sensitive to the density of 
approximated data. 

2. ORIGINAL APPROACH

The original approach of RBF approximation with linear reproduction was introduced by [Fasshauer, G.E., 
2007] (Chapter 19.4). Let us briefly summarize the properties of this approach in this section.  

The goal of this approach is to approximate a given dataset of � points by a function: 
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���� � � �� ���� � ����

�

���

� ������ (1)

where the approximating function ���� is represented as a sum of � RBFs, each associated with a different 
reference point ��, and weighted by an appropriate coefficient �� , and �����  �  �� � �  �� is a linear 
polynomial. This linear polynomial should theoretically solve problems with stability and solvability. Now, it 
is necessary to determine the vector of weights � � ���� � � ����and coefficients of the linear polynomial. 
This is achieved by solving an overdetermined linear system of equations (LSE): 

�� � ����� � � �� ����� � ����

�

���

� ������ � � �� ���

�

���

� ������� � � �� � � �� (2)

where �� is point from the given dataset and is associated with scalar value ��. Moreover, additional 
conditions are applied: 

� �� � �

�

���

� � ���� � �

�

���

� (3)

It can be seen that for �-dimensional space a linear system of �� � � � �� equations in �� � � � ��
variables has to be solved, where � is the number of points in the given dataset, � is the number of reference 
points and � is the dimensionality of the data. 

For � � �, vectors ��, �� and � are given as �� � ���� ����, �� � ���� ���
�
 and � � ���� ���

�
. Thus, for 

�� and the given dataset we can write this LSE in the following matrix form: 

�
� �
� �

� �

�
�
��

� � �
�

�
� (4)

This system is overdetermined (� � �) and can be solved by the least squares method as: 
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It should be noted that additional conditions (3) introduce inconsistency to the least squares method. 
Specifically, the inconsistency is caused by adding the term ��� to ���. Therefore, the described RBF 
approximation with linear reproduction is inconveniently formulated, as it mixes variables which have a 
different physical meaning. Thus, another approach is proposed in the following section. 

3. PROPOSED APPROACH

Let us consider that we have an unordered dataset �����
� in ��. However, note that this approach is generally 

applicable for �-dimensional space. Further, each point �� from the dataset is associated with vector �� �  ��

of given values, where � is the dimension of the vector, or a scalar value �� �  ��. For an explanation of the 
RBF approximation, let us consider the case in which each point �� is associated with a scalar value ��, e.g. a 

� �� surface. Let us introduce a set of new reference points ��� �
�

�
, see Figure 1.  
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Figure 1. RBF approximation and reduction of points

It should be noted that these reference points may not necessarily be in a uniform grid. It is appropriate 
that their placements reflect the given surface behavior (e.g. the terrain profile, etc.) as well as possible. The 
number of added reference points �� is �, where � �  �. The RBF approximation is based on computing 

the distance of the given point �� of the given dataset and the reference point �� of the new reference points.

The approximated value can be expressed as: 

���� � � �� ���� � ����

�

���

   �  ������ (6)

where the approximating function ���� is represented as a sum of � RBFs, each associated with a different 
reference point ��, and weighted by an appropriate coefficient �� , and �����  �  �� � �  �� is a linear 
polynomial. This linear polynomial should theoretically solve problems with stability and solvability. 

It can be seen that for �� and the given dataset we get the following overdetermined LSE: 
�� � �� �  �� (7)

where ���  � ����� � ���� is the entry of the matrix in the �-th row and �-th column, � � ���� � � ���� is the 

vector of weights, ��  �  ���
�� �� is the vector, � �  ���� ����  is the vector of coefficients for the linear 

polynomial and � � ���� � � ���� is the vector of values in the given points. 
The error is then defined as: 

� � ��� � �� �  ��� (8)

then 
�� � ��� � �� �  ������ � �� �  ��� (9)

Our goal is to minimize the square of error, i.e. to find the minimum of �� (9). This minimum is obtained by 
differentiating equation (9) with respect to � and � and finding the zeros of those derivatives. This leads to 
equations: 

���

��
 � ������ � ���� � ���� � ��

���

��
 � ������ � ���� �  ���� � ��

(10)

which leads to a system of linear equations: 

���� ���
��� ���

� �
�

�
� � �

���

���
� � (11)

i.e. 
�� � �� (12)

The matrix � is a �� � �� � �� � �� symmetric positively semidefinite matrix. Equation (11) can be 
expressed in the form: 

Given points x

New reference points
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where ��� � ����� � ����, point �� � ���� ���
� and vector � � ���� ���

�
. It can be seen that this approach 

eliminates the inconsistency introduced in Section 2. 

4. EXPERIMENTAL RESULTS 

Both presented approaches of the RBF approximation have been compared for a dataset with a Halton 
distribution of points [Fasshauer, G.E., 2007] (Appendix A.1). Moreover, each point from this dataset is 
associated with a function value at this point. For this purpose, different functions have been used for 
experiments. Results for two such functions are presented here. The first is a �� sinc function, see Figure 2
(left),�and�the�second�is�Franke’s�function, see Figure 2 (right). 

Figure 2. �� sinc function defined as ���� �
��

����
� ���� �

��

���
�, whose domain is restricted to �������� � ������� (left) 

and�Franke’s�function�(right)

In addition, three different global radial basis functions with shape parameter �, see Table 1, have been 
used for testing. Also different sets of reference points have been used for experiments. 
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Table 1. Used global RBFs 

RBF ����

Gauss function �������

Inverse Quadric (IQ)
�

� � �����

Thin-Plate Spline (TPS) ������������

These sets of reference points have different types of distributions. The presented types of distribution are 
the Halton distribution [Fasshauer, G.E., 2007] (Appendix A.1), see Figure 3 (left), an epsilon distribution, 
which is based on a random drift of points on a regular grid, see Figure 3 (right), and points on a regular grid. 

Figure 3. Halton points in �� (left) and epsilon points in �� (right). Number of points is ��� in both cases

4.1 Examples of RBF Approximation Results 

An example of RBF approximation of 1089 Halton data points sampled from a �� sinc function, for a Halton 
set of reference points which consists of 81 points, using both approaches is shown in Figure 4. The graphs 
are false-colored according to the magnitude of the error. 

Original approach of RBF approximation Proposed approach of RBF approximation

Figure 4. Approximation of 1089 data points sampled from a �� sinc function, i.e. ���� �
��

����
� ���� �

��

���
�, where 

 ��� �� �  �������� � �������, with 81 Halton-spaced Gaussian functions with � � �����,false-colored by magnitude of 
error
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A further example of RBF approximation of 4225 Halton data points sampled from a Franke’s�function
and for a set of reference points which consists of 289 points on a regular grid, using both approaches is 
shown in Figure 5. The graphs are again false-colored by magnitude of error. 

Original approach of RBF approximation Proposed approach of RBF approximation

Figure 5. Approximation of 4225 data points sampled from a Franke’s�function with 289 regularly spaced IQ with 

� �  �����, false-colored by magnitude of error

It can be seen that the original RBF approximation with a linear reproduction returns a worse result in 
terms of the error in comparison with the proposed RBF approximation with a linear reproduction. Moreover, 
we can see from Figure 4 and Figure 5 that for the presented cases the maximum magnitude of error for the 
original approach is approximately two times greater than the maximum magnitude of error for the proposed 
approach. 

There remains the question of how the RBF approximation depends on the shape parameter � selection. 
Many papers have been published about choosing optimal shape parameter �, e.g. [Franke, R., 1982], [Rippa, 
S., 1999], [Fasshauer, G.E. and Zhang, J.G., 2007], [Scheuerer, M., 2011]. In the following section, a 
comparison depending on the choice of shape parameter � is performed. 

4.2 Comparison of Methods 

In this section, the original approach and the proposed approach, which were presented in Section 2 and 
Section 3, are compared. Figure 6 presents the ratio of mean error of the original RBF approximation with the 
linear reproduction to the mean error of the proposed RBF approximation with the linear reproduction, i.e.:

����� �
���� �������������

���� �������������

� (14)

for a dataset which consists of 1089 Halton points in the range �������� � �������, sampled from a �� sinc 
function. The set of reference points contains 81 points with different behavior of the distribution, and for 
different global RBFs. Graphs in Figure 6 represent the experimentally obtained ratio according to the shape 
parameter � of the used RBFs. 
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Figure 6. The ratio of mean error of the original approach to the mean error of the proposed approach of RBF 
approximation of 1089 data points sampled from a �� sinc function with 81 reference points for different RBFs and 

different shape parameters. The used sets of reference points are: Halton points (top left), Epsilon points (top right) and 
points on a regular grid (bottom)

We can see that for the TPS, the mean errors of the proposed approach are significantly smaller than those 
of the original approach (ratio is greater than one). Furthermore, this ratio is not significantly different for the 
different shape parameters �. For the Gaussian function and epsilon reference points, the proposed RBF 
approximation gives better results than the original approach in terms of the mean error. In the remaining 
cases, with five exceptions, the proposed approach is also better. 

The experiments prove that the proposed approach to RBF approximation is correct and gives better and 
more stable results than the original approach [Fasshauer, G.E., 2007].

5. CONCLUSION

This paper presents a new formulation for RBF approximation with a linear reproduction. The proposed 
approach eliminates inconsistency, which occurs in the original RBF approximation with a linear 
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reproduction. This inconsistency is caused by adding additional conditions to the polynomial part. The 
experiments made prove that the proposed approach gives significantly better results than the original method 
in terms of accuracy. The presented approach is easily extendable for general polynomial reproduction and 
for higher dimensionality. 

In future work, application of the proposed approach is to be performed on large real datasets and the 
performance can be further measured. 
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a b s t r a c t 

Approximation of scattered data is often a task in many engineering problems. The radial 

basis function (RBF) approximation is appropriate for large scattered (unordered) datasets 

in d -dimensional space. This approach is useful for a higher dimension d > 2, because the 

other methods require the conversion of a scattered dataset to an ordered dataset (i.e. a 

semi-regular mesh is obtained by using some tessellation techniques), which is computa- 

tionally expensive. The RBF approximation is non-separable, as it is based on the distance 

between two points. This method leads to a solution of linear system of equations (LSE) 

Ac = h . 

In this paper several RBF approximation methods are briefly introduced and a comparison 

of those is made with respect to the stability and accuracy of computation. The proposed 

RBF approximation offers lower memory requirements and better quality of approximation. 

© 2017 Elsevier Inc. All rights reserved. 

1. Introduction 

Radial basis functions (RBFs) are widely used across many fields solving technical and non-technical problems. A RBF 

method was originally introduced by [1] and it is an effective tool for solving partial differential equations in engineering 

and sciences. Moreover, RBF applications can be found in neural networks, fuzzy systems, pattern recognition, data visualiza- 

tion, medical applications, surface reconstruction [2–5] , reconstruction of corrupted images [6,7] , etc. The RBF approximation 

technique is really meshless and is based on collocation in a set of scattered nodes. This method is independent with re- 

spect to the dimension of the space. The computational cost of RBF approximation increases nonlinearly with the number 

of points in the given dataset and linearly with the dimensionality of data. 

There are two main groups of basis functions: global RBFs and compactly supported RBFs (CS-RBFs) [8] . Fitting scattered 

data with CS-RBFs leads to a simpler and faster computation, because a system of linear equations has a sparse matrix. 

However, approximation using CS-RBFs is quite sensitive to the density of approximated scattered data and to the choice 

of a shape parameter. Global RBFs lead to a linear system of equations with a dense matrix and their usage is based on 

sophisticated techniques such as the fast multipole method [9] . Global RBFs are useful in repairing incomplete datasets and 

they are insensitive to the density of approximated data. 
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2. RBF approximation using Lagrange multipliers 

RBF approximation introduced by Fasshauer [ 10 , Chapter 19] is based on Lagrange multipliers. In this section, the prop- 

erties of this method will be briefly summarized. 

This RBF approximation is formulated as a constrained quadratic optimization problem. The goal of this method is to 

approximate the given dataset by function: 

f (x ) = 

M ∑ 

j=1 

c j φ(‖ x − ξ j ‖ ) , (1) 

where the approximating function f ( x ) is represented as a sum of M RBFs, each associated with a different reference point ξj , 

and weighted by an appropriate coefficient c j . Therefore, it is necessary to determine the vector of weights c = (c 1 , . . . , c M 

) T , 

which leads to the minimization of the quadratic form: 

1 

2 

c T Qc , (2) 

where Q is some M × M symmetric positive definite matrix. This quadratic form is minimized subject to the N linear con- 

straints Ac = h , where A is an N × M matrix with full rank, and the right-hand side h = (h 1 , . . . , h N ) 
T is given. Thus the 

constrained quadratic minimization problem can be described as an LSE: 

F (c , λ) = 

1 

2 

c T Qc − λT 
( Ac − h ) , (3) 

where λ = (λ1 , . . . , λN ) 
T is the vector of Lagrange multipliers, and we need to find the minimum of (3) with respect to c 

and λ. This leads to solving the following system: 

∂F (c , λ) 

∂c 
= Qc − A 

T λ = 0 

∂F (c , λ) 

∂ λ
= Ac − h = 0 (4) 

or, in matrix form: (
Q −A 

T 

A 0 

)(
c 
λ

)
= 

(
0 

h 

)
, (5) 

where Q i, j = φ(‖ ξi − ξ j ‖ ) and Q is a symmetric matrix. Eq. (5) is then solved. 

It should be noted that we want to minimize M in order to reduce the computational cost of the approximated value 

f ( x ) as much as possible. 

3. RBF approximation 

Another approach is RBF interpolation, which is based on a solution of a linear system of equations (LSE) [11] : 

Ac = h , (6) 

where A is a matrix of this system, c is a column vector of variables and h is a column vector containing the right sides 

of equations. In this case, A is an N × N matrix, where N is the number of given points, the variables are weights for basis 

functions and the right sides of equations are values in the given points. The disadvantage of RBF interpolation is the large 

and usually ill-conditioned matrix of the LSE. Moreover, in the case of an oversampled dataset or intended reduction, we 

want to reduce the given problem, i.e. reduce the number of weights and used basis functions, and preserve good precision 

of the approximated solution. The approach, which includes the reduction, is called RBF approximation. In the following, the 

method recently introduced in [11] is described in detail. 

For simplicity, we assume that we have an unordered dataset { x i } N 1 in E 2 . However, note that this approach is generally 

applicable for d -dimensional space. Further, each point x i from the dataset is associated with vector h i ∈ E p of the given 

values, where p is the dimension of the vector, or scalar value h i ∈ E 1 . For an explanation of the RBF approximation, let us 

consider the case when each point x i is associated with scalar value h i . Now we extend the given dataset by a set of new 

reference points { ξ j } M 

1 
, see Fig. 1 . 

These reference points may not necessarily be in a uniform grid. It is appropriate, that their placement reflects the given 

surface as well as possible. A good placement of the reference points improves the approximation of the underlying data. For 

example, when a terrain is to be approximated, placement along features such as break lines leads to better approximation 

results. The number of added reference points ξj is M , where M � N . The RBF approximation is based on computing the 

distance of given point x i and reference point ξj from the extended dataset. 
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Given points x
New reference points ξ

Fig. 1. RBF approximation and reduction of points. 

The approximated value can be determined similarly as for interpolation (see [11] ): 

f (x ) = 

M ∑ 

j=1 

c j φ(r j ) = 

M ∑ 

j=1 

c j φ(‖ x − ξ j ‖ ) , (7) 

where the approximating function f ( x ) is represented as a sum of M RBFs, each associated with a different reference point 

ξj , and weighted by an appropriate coefficient c j . 

It can be seen that we get an overdetermined LSE for the given dataset: 

h i = f (x i ) = 

M ∑ 

j=1 

c j φ(‖ x i − ξ j ‖ ) = 

M ∑ 

j=1 

c j φi, j , i = 1 , . . . , N . (8) 

The linear system of Eq. (8) can be represented as the matrix equation: 

Ac = h , (9) 

where the number of rows is N � M and M is the number of unknown weights [ c 1 , . . . , c M 

] T , i.e. the number of reference 

points. Eq. (9) can be expressed in the form: ⎛ 

⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

φ1 , 1 · · · φ1 ,M 

. . . 
. . . 

. . . 
φi, 1 · · · φi,M 

. . . 
. . . 

. . . 
φN, 1 · · · φN,M 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

⎛ 

⎝ 

c 1 
. . . 

c M 

⎞ 

⎠ = 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

h 1 

. . . 
h i 

. . . 
h N 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

. (10) 

Thus the presented system is overdetermined, i.e. the number of equations N is higher than number of variables M . This 

LSE can be solved by the least squares method as A 

T Ac = A 

T h or singular value decomposition, etc. 

4. RBF approximation with polynomial reproduction 

The method which was introduced in Section 3 can theoretically have problems with stability and solvability. Therefore, 

the RBF approximant (7) is usually extended by polynomial function P k ( x ) of degree k . Now, the approximated value can be 

expressed in the form: 

f (x ) = 

M ∑ 

j=1 

c j φ(‖ x − ξ j ‖ ) + P k (x ) . (11) 

where ξj are reference points specified by a user. This leads to solving the LSE: 

h i = f (x i ) = 

M ∑ 

j=1 

c j φ(‖ x i − ξ j ‖ ) + P k (x i ) 

= 

M ∑ 

j=1 

c j φi, j + P k (x i ) , i = 1 , . . . , N . (12) 

In practice, a linear polynomial 

P 1 (x ) = a T x + a 0 (13) 
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Table 1 

Used global RBFs ( α is a shape parameter). 

RBF φ( r ) 

Gauss function [12] e −(αr) 2 

Inverse quadric (IQ) 
1 

1 + (αr) 2 

Thin-plate spline (TPS) [13] (αr) 2 log (αr) 

is used. Geometrically, the coefficient a 0 determines the placement of the hyperplane and the expression a T x represents the 

inclination of the hyperplane. 

It can be seen that for d -dimensional space a linear system of N equations in (M + d + 1) variables has to be solved, 

where N is the number of points in the given dataset, M is the number of reference points and d is the dimensionality of 

space, e.g. for d = 2 vectors x i and a are given as x i = (x i , y i ) 
T and a = (a x , a y ) 

T . Using the matrix notation, we can write for 

E 2 : ⎛ 

⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

φ1 , 1 · · · φ1 ,M 

x 1 y 1 1 

. . . 
. . . 

. . . 
. . . 

. . . 
. . . 

φi, 1 · · · φi,M 

x i y i 1 

. . . 
. . . 

. . . 
. . . 

. . . 
. . . 

φN, 1 · · · φN,M 

x N y N 1 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

c 1 
. . . 

c M 

a x 
a y 
a 0 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

= 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

h 1 

. . . 
h i 

. . . 
h N 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

. (14) 

Eq. (14) can also be expressed in the form: 

(
A P 

)( 

c 
a 
a 0 

) 

= h . (15) 

It can be seen that for E 2 we have a linear system of N equations in (M + 3) variables, where M � N . Thus the presented 

system is overdetermined again and can also be solved by the method of least squares or singular value decomposition. 

5. Experimental results 

The above presented methods of the RBF approximation have been tested on synthetic and real datasets. Moreover, 

different global radial basis functions with shape parameter α, see Table 1 , and different sets of reference points have been 

used for testing. These sets of reference points have different types of distributions described in Section 5.1 . 

5.1. Distribution of reference points 

For these experiments, the following sets of reference points were used: 

Points on regular grid: This set contains the points on a regular grid in E 2 . 

Epsilon points: This distribution of reference points is described in the following text. 

Epsilon points + AABB corners: This set of points is determined in the same manner as the previous case. Moreover, 

the corners of axis aligned bounding box (AABB) of Epsilon points are added to the set of reference points. 

Halton points: This distribution of points is described in the following text in detail. However, note that this set of 

reference points equals the subset of the given dataset, for which we determine the RBF approximation. 

Halton points + AABB corners: This set of reference points is determined in the same manner as Halton points. More- 

over, the corners of AABB are added to this set. 

5.1.1. Halton points 

Construction of a Halton sequence is based on a deterministic method. This sequence generates well-spaced “draws”

points from the interval [0, 1]. The sequence uses a prime number as its base and is constructed based on finer and finer 

prime-based divisions of sub-intervals of the unit interval. The Halton sequence [10] can be described by the following 

recurrence formula: 

Halton (p) k = 

� log p k � ∑ 

i =0 

1 

p i +1 

(⌊ 

k 

p i 

⌋ 

mod p 

)
, (16) 

where p is the prime number and k is the index of the calculated element. 
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Fig. 2. Halton points in E 2 generated by Halton(2,3) (left) and random points in a rectangle with uniform distribution (right). The number of points is 10 3 

in both cases. 

Fig. 3. Epsilon points (left) and points on a 2D regular grid (right). The number of points is 40 × 25 = 10 3 in both cases. 

For the E 2 space, subsequent prime numbers are used as a base. In this test, {2, 3} were used for the Halton sequence 

and the following sequence of points in a rectangle ( a, b ) was derived: 

Halton (2 , 3) = 

{ (
1 

2 

a, 
1 

3 

b 

)
, 

(
1 

4 

a, 
2 

3 

b 

)
, 

(
3 

4 

a, 
1 

9 

b 

)
, 

(
1 

8 

a, 
4 

9 

b 

)
, 

(
5 

8 

a, 
7 

9 

b 

)
, (

3 

8 

a, 
2 

9 

b 

)
, 

(
7 

8 

a, 
5 

9 

b 

)
, 

(
1 

16 

a, 
8 

9 

b 

)
, 

(
9 

16 

a, 
1 

27 

b 

)
, . . . 

} 

, (17) 

where a is the width of the rectangle and b is the height of the rectangle. 

Visualization of the dataset with 10 3 points of the Halton sequence from (17) can be seen in Fig. 2 . We can see that the 

Halton sequence in E 2 space covers this space more evenly than randomly distributed uniform points in the same rectangle. 

5.1.2. Epsilon points 

This is a special distribution of points in E 2 , which is based on a regular grid. Each point is determined as follows: 

P i j = 

[ 
i · �x + rand (−ε x , ε x ) , j · �y + rand (−ε y , ε y ) 

] 
, 

ε x ≈ 0 . 25 · �x , i = 0 , . . . , N x , 

ε y ≈ 0 . 25 · �y , j = 0 , . . . , N y , 

(18) 

where �x and �y are real numbers representing the grid spacing, N x indicates the number of grid columns, N y is the 

number of grid rows and rand (−ε x , ε x ) or rand (−ε y , ε y ) is a random drift with a uniform distribution from −ε x to εx or 

from −ε y to εy . 

Fig. 3 presents the dataset with 40 × 25, (i.e. 10 3 ) epsilon points. Moreover, we can see the comparison of this distribution 

of points with points on a regular grid. 

5.2. Synthetic datasets 

The Halton distribution of points was used for synthetic data. Moreover, each point from this dataset is associated with 

a function value at this point. For this purpose, different functions have been used for experiments. Results for a 2D sinc 

function, see Fig. 4 , are presented in this paper. 

5.2.1. Examples of RBF approximation results 

Some examples of RBF approximation to 1089 Halton data points sampled from a 2D sinc function, for a Halton set of 

reference points, which consists of 81 points, and different RBFs are shown in Figs. 5 and 6 . 

It can be seen that the RBF approximation using Lagrange multiplies (Fasshauer [10] ) returns the worst result in terms 

of the error in comparison with the proposed methods. Further, in Fig. 6 , it can be seen that the errors for all RBF approxi- 

mation methods are much higher when the TPS is used. 

There is a question of how the RBF approximation depends on the shape parameter α. This is described in the following 

section. 
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Fig. 4. 2D sinc function sinc( πx ) · sinc( πy ) whose domain is restricted to [0, 1] × [0, 1]. 

Fig. 5. Approximation to 1089 data points sampled from a 2D sinc function with 81 Halton-spaced Gaussian basis functions false-colored by magnitude of 

absolute error. 
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Fig. 6. Approximation to 1089 data points sampled from a 2D sinc function with 81 Halton-spaced TPS false-colored by magnitude of absolute error. 

5.2.2. Comparison of methods 

In this section, the different versions of RBF approximation which were presented in Sections 2 –4 are compared. Fig. 7 

presents the mean absolute error of RBF approximation for the dataset, which consists of 1089 Halton points in the range 

[0, 1] × [0, 1], sampled from a 2D sinc function, while the set of reference points contains 81 points with Halton behavior 

of the distribution, and for different global radial basis functions. The graphs represent the mean absolute error according 

to a shape parameter α of used RBFs. We can see that for RBF approximation using Lagrange multipliers (Fasshauer [10] ) 

we obtain a higher mean absolute error. Mean absolute errors for RBF approximation and RBF approximation with linear 

reproduction are almost the same. Moreover, the Gaussian RBF gives the best result for shape parameter α = 1 and the 

inverse quadric for α = 0 . 5 . Further, the TPS function is not appropriate to solve the given problem, see Fig. 7 c. Note, the 

standard deviation of errors was also measured and the same behavior and order of magnitude was obtained as for the 

mean absolute errors. 

5.2.3. Comparison of different distributions of reference points 

In this section, we focus on a comparison of the presented RBF approximation methods due to used distribution of 

reference points. Measurements of errors were performed for different type of RBFs with different shape parameters. Mean 

absolute error according to shape parameter α for Gaussian RBF is presented in Fig. 8 . 

We can see that for all versions of RBF approximation the worst result is obtained for reference points on a regular grid 

(u). For the proposed RBF approximation, the remaining sets of reference points give almost the same results. Reference 

points corresponding to epsilon points + AABB (epsaabb) almost always give the best result for RBF approximation with 

linear reproduction. For RBF approximation using Lagrange multipliers, the best results are for the reference points which 

have a Halton distribution. 
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Fig. 7. The mean absolute error of approximation to 1089 data points sampled from a 2D sinc function with 81 reference Halton points for different RBF 

approximation methods, different RBFs and different shape parameters. The used approximation methods are: proposed RBF approximation (approx), RBF 

approximation using Lagrange multipliers (approxMult) and RBF approximation with linear reproduction (approxLin). RBFs are: (a) Gauss function, (b) IQ, 

(c) TPS. 

5.2.4. Comparison by placement of the dataset in E 2 

This section is focused on placement of the actual dataset in the domain space and the used function generating asso- 

ciated scalar values in E 2 . The given dataset has a range of one in both axes and the function generating associated scalar 

values is a 2D sinc function. Two configurations for placement of the origin of the dataset and the maximum of the 2D sinc 

function were used. The first configuration is at point (0; 0); the second is moved to point (3, 951, 753; 2, 785, 412). 

Fig. 9 presents the mean absolute error for these configurations, when the Gaussian basis functions and Halton set of ref- 

erence points were chosen. We can see that RBF approximation with linear reproduction gives a higher error for the second 

configuration, i.e. placement at point (3, 951, 753; 2, 785, 412). For RBF approximation using Lagrange multiplier the deci- 

sion is not ambiguous. Note that a graph for the proposed RBF approximation is not presented, because both configurations 

give the same results. 

5.2.5. Optimal number of reference points 

This section focuses on the influence of the number of reference points. The number of reference points is determined 

relative to the number of points in the given dataset. Measurements for different shape parameters were performed many 

times and average mean absolute errors were computed, see Figs. 10–12 . Note that the reference points were distributed by 

Halton distribution. Fig. 10 presents the mean absolute error for the Gaussian RBF approximation. Experimental results for 

the IQ are shown in Fig. 11 . We can see that for the small shape parameter α the mean absolute errors are almost constant. 

However, for greater shape parameters the mean absolute error decreases with the increasing number of reference points. 

Fig. 12 presents experimental results obtained for the TPS function. We can see that the mean absolute error decreases 

with the increasing number of reference points as would be expected. 

Finally, note that the results for RBF approximation with reproduction are very similar to the proposed RBF approxima- 

tion. RBF using Lagrange multipliers has unpredictable behavior and no trend can be established. 

5.3. Real datasets 

The presented methods of the RBF approximation have been also tested on real data. Let us introduce results for real 

dataset which was obtained from GPS data of mount Ve ľ ký Rozsutec in the Malá Fatra, Slovakia ( Fig. 13 ). 1 Each point of this 

1 http://www.gpsvisualizer.com/elevation 
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Fig. 8. The mean absolute error of approximation to 1089 data points sampled from a 2D sinc function with 81 spaced Gaussian basis functions for 

different RBF approximation methods, different shape parameters and different sets of reference points. The sets of reference points are: Halton points 

(h), Halton points + AABB (haabb), epsilon points (eps), epsilon points + AABB (epsaabb), points on a regular grid (u). Their description is in Section 5.1 . 

Versions of approximation are: (a) RBF approximation, (b) RBF approximation with linear reproduction, (c) RBF approximation using Lagrange multipliers. 

Fig. 9. The mean absolute error of approximation to 1089 data points sampled from a 2D sinc function with 81 spaced Gaussian basis functions for a Halton 

set of reference points, different RBF approximation methods and different shape parameters. The placement of the given dataset and the maximum of the 

2D sinc function are at point (0; 0) (circles) or at point (3, 951, 753; 2, 785, 412) (squares). Versions of approximation are RBF approximation with linear 

reproduction (left) and RBF approximation using Lagrange multipliers (right). 

dataset is associated with its elevation. Moreover, as a first step, the real dataset is translated so that its estimated center 

of gravity corresponds to the origin of the coordinate system. This step is used due to the limitation of the influence of 

dataset placement in space and it was chosen based on the results of experiments described in Section 5.2.4 . Table 2 gives 

an overview of the used dataset. 
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Fig. 10. The mean absolute error of the proposed RBF approximation to 1089 data points sampled from a 2D sinc function for different numbers of 

reference points, Gaussian RBF with different shape parameters α. 

Fig. 11. The mean absolute error of the proposed RBF approximation to 1089 data points sampled from a 2D sinc function for different numbers of 

reference points, IQ RBF with different shape parameters α. 

Fig. 12. The mean absolute error of the proposed RBF approximation to 1089 data points sampled from a 2D sinc function for different numbers of 

reference points, TPS RBF with different shape parameters α. 
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Fig. 13. Mount Ve ľ ký Rozsutec, Slovakia (left) and its contour map (right). 

Table 2 

Overview information for the tested real dataset. The axis- 

aligned bounding box (AABB) of the tested dataset has a 

size width × length × relief, i.e. x range × y range × z range . 

Ve ľ ký Rozsutec 

Number of pts. 24,190 

Relief (m) 818.80 0 0 

Width (m) 2608.5927 

Length (m) 2884.1169 

5.3.1. Examples of RBF approximation results 

Results for RBF approximation of mount Ve ľ ký Rozsutec dataset using Halton set of reference points, which consists of 

484 points, and Gaussian RBF with shape parameter α = 0 . 0025 are shown in Fig. 14 and histograms of errors for these 

results are shown in Fig. 15 . 

Note, that the results of RBF approximation using Lagrange multipliers are not presented for real data because this 

method has unpredictable behavior and is unusable for real dataset, which was already evident from results for synthetic 

datasets. From presented results, it can be seen that the RBF approximation with linear reproduction returns the worst re- 

sult in terms of the error in comparison with the proposed method. Moreover, if the results of approximation are compared 

with the original, it can be seen that the RBF approximation with the global Gaussian RBFs cannot preserve the sharp ridge. 

Results for RBF approximation of mount Ve ľ ký Rozsutec dataset using Halton set of reference points, which contains 

different number of points, and TPS with shape parameter α = 0 . 005 are shown in Fig. 16 . The histograms of errors for 

these results are shown in Fig. 17 . From these results, it can be seen that with an increasing number of reference points, 

approximation error is improved and some surface details also begin to appear. However, it can be again seen that the RBF 

approximation with the global TPS cannot preserve the sharp ridge. 

There is a question of how the RBF approximation of real dataset depends on the shape parameter α and distribution of 

reference points. This is described in the following sections. 

5.3.2. Comparison of different distributions of reference points 

In this section, we focus on a comparison of the presented RBF approximation methods due to used distribution of 

reference points when the real data are approximated. Measurements of errors were performed for different type of RBFs 

with different shape parameters. Mean relative error according to shape parameter α for the Gaussian RBF is presented in 

Fig. 18 and for the IQ is shown in Fig. 19 . Note that the mean relative error is presented for real data. The reason for this 

choice is that the function values of the real dataset are not normalized to the interval [0, 1]. 

We can see that for all versions of RBF approximation, if the shape parameter α is not close to the optimum, the worst 

results are obtained for reference points with Halton distribution ((h) and (haabb)). The best results are obtained for refer- 

ence points on a regular grid (u). If the shape parameter is chosen close to the optimum (for the presented configuration 

α ≈ 0.0025) then the mean relative error has only minor differences for different distribution of reference points. These 

results are different in comparison with results obtained for synthetic data. 

Finally, note that the mean relative error for approximation of mount Ve ľ ký Rozsutec dataset according to shape pa- 

rameter is constant for the TPS and deviation of mean relative error for different distribution of reference points is almost 

negligible. 
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Fig. 14. Results for mount Ve ľ ký Rozsutec approximated by 484 Halton-spaced Gaussian basis functions with shape parameter α = 0 . 0025 . 

Fig. 15. Histograms of errors for mount Ve ľ ký Rozsutec approximated by 484 Halton-spaced Gaussian basis functions with shape parameter α = 0 . 0025 . 

57



740 Z. Majdisova, V. Skala / Applied Mathematical Modelling 51 (2017) 728–743 

Fig. 16. Results for mount Ve ľ ký Rozsutec approximated by Halton-spaced TPS with shape parameter α = 0 . 005 . 

Fig. 17. Histograms of errors for mount Ve ľ ký Rozsutec approximated by Halton-spaced TPS with shape parameter α = 0 . 005 . 
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Fig. 18. The mean relative error of approximation for mount Ve ľ ký Rozsutec with 484 spaced Gaussian basis functions for different RBF approximation 

methods, different shape parameters and different sets of reference points. The sets of reference points are: Halton points (h), Halton points + AABB (haabb), 

epsilon points (eps), epsilon points + AABB (epsaabb), points on a regular grid (u), described in Section 5.1 . 

Fig. 19. The mean relative error of approximation for mount Ve ľ ký Rozsutec with 484 spaced IQ for different RBF approximation methods, different shape 

parameters and different sets of reference points. The sets of reference points are: Halton points (h), Halton points + AABB (haabb), epsilon points (eps), 

epsilon points + AABB (epsaabb), points on a regular grid (u), described in Section 5.1 . 

5.3.3. Comparison of different radial basis functions 

In this section, we focus on a comparison of the results of RBF approximations using different types of RBFs. Real datasets 

were used for experiments and results of the mount Ve ľ ký Rozsutec are presented. Measurements of errors were performed 

for Halton set with 484 reference points. The shape parameter α = 0 . 0025 was chosen for all types of RBFs. The differences 

of frequencies of errors are shown in Fig. 20 . It can be seen that the best error is obtained for the RBF approximation using 

the IQ function. On the contrary, the worst error returns the RBF approximation using the TPS function. 

Finally, note that the results for the RBF approximation with linear reproduction are similar to the proposed RBF approx- 

imation. 

5.3.4. Optimal number of reference points 

This section focuses on the influence of the number of reference points for RBF approximation of mount Ve ľ ký Rozsutec 

dataset. The number of reference points is determined relative to the number of points in the given dataset. Measurements 

for different shape parameters were performed many times and average mean relative errors were computed, see Figs. 21–

23 . Note that the reference points were distributed by Halton distribution. Fig. 21 presents the mean relative error for the 

Gaussian RBF approximation and Fig. 22 presents results for the IQ. It can be seen that for small shape parameter α the 

mean relative errors are almost constant. However, for the greater shape parameters the mean relative error decreases with 

the increasing number of reference points. These results are consistent with results for synthetic dataset. 

Fig. 23 presents experimental results obtained for TPS. We can see that the mean relative error is independent on the 

shape parameter α and decreases with the increasing number of reference points. 

Finally, note that the results for RBF approximation with linear reproduction are very similar to the proposed RBF ap- 

proximation. 
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Fig. 20. Difference of frequencies of error for mount Ve ľ ký Rozsutec approximated by 484 Halton-spaced RBFs with shape parameter α = 0 . 0025 . 

Fig. 21. The mean relative error of the proposed RBF approximation of mount Ve ľ ký Rozsutec dataset for different numbers of reference points, Gaussian 

RBF with different shape parameters α. 

Fig. 22. The mean relative error of the proposed RBF approximation of mount Ve ľ ký Rozsutec dataset for different numbers of reference points, IQ RBF 

with different shape parameters α. 
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Fig. 23. The mean relative error of the proposed RBF approximation of mount Ve ľ ký Rozsutec dataset for different numbers of reference points, TPS RBF 

with different shape parameters α. 

6. Conclusion 

Comparisons of different methods of RBF approximation with respect to various criteria were presented. The proposed 

RBF approximation introduced in Section 3 gives the best results due to the smallest error. The RBF approximation with 

a linear reproduction can be influenced by placement of the given dataset in space. Therefore, it is appropriate that the 

translation of the estimated center of gravity to the origin of the coordinate system is made as the first step. The worst 

results according to error were obtained using the RBF approximation using Lagrange multipliers. Moreover, this method 

of approximation has unpredictable behavior, the matrix for RBF approximation using Lagrange multipliers is mostly ill- 

conditioned and its size is high, i.e. it is of the (M + N) × (M + N) size. 

The experiments proved that the proposed RBF approximation gives significantly better result over other methods used 

in the experiments described above. It also offers a possible data compression as the matrix is only M × M , where M � N , 

which is a significant factor for large datasets processing. On the other hand, experiments made also proved that all methods 

have problems with the preservation of sharp edges if global functions are used. 

Future work will be devoted to evaluation of compactly-supported RBFs (CS-RBFs) which will lead to sparse matrices, 

decrease of memory requirements and significant increase of speed of computation. A special attention will be given to 

finding optimal shape parameters which are critical for the RBF approximation quality. 

Acknowledgments 

The authors would like to thank their colleagues at the University of West Bohemia, Plzen, for their discussions and 

suggestions, and anonymous reviewers for their valuable comments and hints provided. The research was supported by the 

National Science Foundation GA ̌CR project GA17-05534S and partially supported by SGS-2016-013. 

References 

[1] R.L. Hardy , Multiquadratic equations of topography and other irregular surfaces, J. Geophys. Res. 76 (1971) 1905–1915 . 

[2] R. Pan , V. Skala , Continuous global optimization in surface reconstruction from an oriented point cloud, Comput. Aided Des. 43 (8) (2011) 896–901 . 
[3] R. Pan , V. Skala , A two-level approach to implicit surface modeling with compactly supported radial basis functions, Eng. Comput. 27 (3) (2011) 

299–307 . 
[4] V. Skala , R. Pan , O. Nedved , Simple 3D surface reconstruction using flatbed scanner and 3D print, in: SIGGRAPH Asia 2013, Hong Kong, China, November 

19–22, 2013, Poster Proceedings, ACM, 2013, p. 7 . 
[5] V. Skala , R. Pan , O. Nedved , Making 3D replicas using a flatbed scanner and a 3D printer, in: Computational Science and Its Applications – ICCSA 

2014 – 14th International Conference, Guimarães, Portugal, June 30–July 3, 2014, Proceedings, Part VI, in: Lecture Notes in Computer Science, 8584, 
Springer, 2014, pp. 76–86 . 

[6] K. Uhlir , V. Skala , Reconstruction of damaged images using radial basis functions, in: Proceedings of EUSIPCO 2005, 2005, p. 160 . 

[7] J. Zapletal , P. Van ̌e ̌cek , V. Skala , RBF-based image restoration utilising auxiliary points, in: Proceedings of the 2009 Computer Graphics International 
Conference, ACM, 2009, pp. 39–43 . 

[8] H. Wendland , Computational aspects of radial basis function approximation, Stud. Comput. Math. 12 (2006) 231–256 . 
[9] E. Darve , The fast multipole method: numerical implementation, J. Comput. Phys. 160 (1) (20 0 0) 195–240 . 

[10] G.E. Fasshauer , Meshfree Approximation Methods with MATLAB, 6, World Scientific Publishing Co., Inc., River Edge, NJ, USA, 2007 . 
[11] V. Skala , Fast interpolation and approximation of scattered multidimensional and dynamic data using radial basis functions, WSEAS Trans. Math. 12 

(5) (2013) 501–511 . 

[12] I. Schagen , Interpolation in two dimensions - a new technique, IMA J. Appl. Math. 23 (1) (1979) 53–59 . 
[13] J. Duchon , Splines minimizing rotation-invariant semi-norms in Sobolev spaces, Constructive Theory of Functions of Several Variables, Springer, 1977, 

pp. 85–100 . 

61



Appendix D

A Radial Basis Function
Approximation for Large Datasets

Majdišová, Z., Skala, V.
Proceedings of SIGRAD 2016, pp. 9-14, Linköping University Electronic Press (2016),
ISSN 1650-3686, ISBN 978-91-7685-731-1

62



SIGRAD 2016
M. Hayashi (Editors)

A Radial Basis Function Approximation for Large Datasets

Z. Majdisova1 and V. Skala1

1Department of Computer Science and Engineering, Faculty of Applied Sciences, University of West Bohemia,
Univerzitni 8, CZ 30614 Plzen, Czech Republic

Abstract
Approximation of scattered data is often a task in many engineering problems. The Radial Basis Function (RBF)
approximation is appropriate for large scattered datasets in d-dimensional space. It is non-separable approxima-
tion, as it is based on a distance between two points. This method leads to a solution of overdetermined linear
system of equations.
In this paper a new approach to the RBF approximation of large datasets is introduced and experimental results for
different real datasets and different RBFs are presented with respect to the accuracy of computation. The proposed
approach uses symmetry of matrix and partitioning matrix into blocks.

Categories and Subject Descriptors (according to ACM CCS): G.1.2 [Numerical Analysis]: Approximation—
Approximation of Surfaces and Contours

1. Introduction

Interpolation and approximation are the most frequent oper-
ations used in computational techniques. Several techniques
have been developed for data interpolation or approximation,
but they mostly expect an ordered dataset, e.g. rectangular
mesh, structured mesh, unstructured mesh etc. However, in
many engineering problems, data are not ordered and they
are scattered in d−dimensional space, in general. Usually,
in technical applications the conversion of a scattered dataset
to a semi-regular grid is performed using some tessellation
techniques. However, this approach is quite prohibitive for
the case of d−dimensional data due to the computational
cost.

Interesting techniques are based on the Radial Basis Func-
tion (RBF) method which was originally introduced by
[Har71]. They are widely used across of many fields solv-
ing technical and non-technical problems. The RBF appli-
cations can be found in neural networks, data visualiza-
tion [PRF14], surface reconstruction [CBC∗01], [TO02],
[PS11], [SPN13], [SPN14], solving partial differential equa-
tions [LCC13], [HSfY15], etc. The RBF techniques are re-
ally meshless and are based on collocation in a set of scat-
tered nodes. These methods are independent with respect to
the dimension of the space. The computational cost of this
techniques increase nonlinearly with the number of points
in the given dataset and linearly with the dimensionality of
data.

There are two main groups of basis functions: global
RBFs and Compactly Supported RBFs (CS-RBFs) [Wen06].
Fitting scattered data with CS-RBFs leads to a simpler and
faster computation, but techniques using CS-RBFs are sen-
sitive to the density of scattered data. Global RBFs lead to
a linear system of equations with a dense matrix and their
usage is based on sophisticated techniques such as the fast
multipole method [Dar00]. Global RBFs are useful in re-
pairing incomplete datasets and they are insensitive to the
density of scattered data.

For the processing of scattered data we can use the RBF
interpolation or the RBF approximation. The RBF interpo-
lation, e.g. presented by [Ska15], is based on a solution of a
linear system of equations:

Ac = h, (1)

where A is a matrix of this system, c is a column vector of
variables and h is a column vector containing the right sides
of equations. In this case, A is an N×N matrix, where N is
the number of points in the given scattered dataset, the vari-
ables are weights for basis functions and the right sides of
equations are values in the given points. The disadvantage
of RBF interpolation is the large and usually ill-conditioned
matrix of the linear system of equations. Moreover, in the
case of an oversampled dataset or intended reduction, we
want to reduce the given problem, i.e. reduce the number of
weights and used basis functions, and preserve good preci-
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sion of the approximated solution. The approach which in-
cludes the reduction is called the RBF approximation. In the
following section, the method recently introduced in [Ska13]
is described in detail. This approach requires less memory
and offer higher speed of computation than the method us-
ing Lagrange multipliers [Fas07]. Further, a new approach
to RBF approximation of large datasets is presented in the
Section 3. These approach uses symmetry of matrix and par-
titioning matrix into blocks.

2. RBF Approximation

For simplicity, we assume that we have an unordered dataset
{xi}N

1 ∈ E2. However, this approach is generally applica-
ble for d-dimensional space. Further, each point xi from the
dataset is associated with a vector hi ∈ E p of the given val-
ues, where p is the dimension of the vector, or scalar value,
i.e. hi ∈ E1. For an explanation of the RBF approximation,
let us consider the case when each point xi is associated with
a scalar value hi, e.g. a 21/2D surface. Let us introduce a set
of new reference points {ξξξ j}M

1 , see Figure 1.

Given points x
New reference points ξ

Figure 1: The RBF approximation and reduction of points.

These reference points may not necessarily be in a uni-
form grid. It is appropriate that their placement reflects the
given surface (e.g. the terrain profile, etc.) as well as possi-
ble. The number of reference points ξξξ j is M, where M� N.
Now, the RBF approximation is based on the distance com-
putation of the given point xi and the reference point ξξξ j.

The approximated value is determined similarly as for in-
terpolation (see [Ska15]):

f (x) =
M

∑
j=1

c jφ(r j) =
M

∑
j=1

c jφ(‖x−ξξξ j‖), (2)

where φ(r j) is a used RBF centered at point ξξξ j and the ap-
proximating function f (x) is represented as a sum of these
RBFs, each associated with a different reference point ξξξ j,
and weighted by a coefficient c j which has to be determined.

It can be seen that we get an overdetermined linear system

of equations for the given dataset:

hi = f (xi) =
M

∑
j=1

c jφ(‖xi−ξξξ j‖)

=
M

∑
j=1

c jφi, j i = 1, . . . ,N.

(3)

The linear system of equations (3) can be represented in a
matrix form as:

Ac = h, (4)

where the number of rows is N�M and M is the number of
unknown weights [c1, . . . ,cM ]T , i.e. the number of reference
points. Equation (4) represents system of linear equations:




φ1,1 · · · φ1,M
...

. . .
...

φi,1 · · · φi,M
...

. . .
...

φN,1 · · · φN,M







c1
...

cM


=




h1
...

hi
...

hN




. (5)

The presented system is overdetermined, i.e. the number of
equations N is higher than the number of variables M. This
linear system of equations can be solved by the least squares
method as AT Ac = AT h or singular value decomposition,
etc.

3. RBF Approximation for Large Data

In practice, the real datasets contain a large number of points
which results into high memory requirements for storing the
matrix A of the overdetermined linear system of equations
(5). For example when we have dataset contains 3,000,000
points, number of reference points is 10,000 and double pre-
cision floating point is used then we need 223.5 GB memory
for storing the matrix A of the overdetermined linear system
of equations (5). Unfortunately, we do not have an unlim-
ited capacity of RAM memory and therefore calculation of
unknown weights c j for RBF approximation would be pro-
hibitively computationally expensive due to memory swap-
ping, etc. In this section, a proposed solution to this problem
is described.

In Section 2, it was introduced that overdetermined sys-
tem of equations can be solved by the least squares method.
For this method the M×M square matrix:

B = AT A (6)

is to be determined. Advantages of matrix B are that it is a
symmetric matrix and moreover only two vectors of length
N are needed te determine of one entry, i.e.:

bi j =
N

∑
k=1

φki ·φk j, (7)
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where bi j is the entry of the matrix B in the i−th row and
j−th column.

To save memory requirements and data bus (PCI) load
block operations with matrices are used. Based on the above
properties of the matrix B, only the upper triangle of this
matrix is computed. Moreover the matrix is partitioned into
MB ×MB blocks, see Figure 2, and the calculation is per-
formed sequentially for each block:

Bkl = (A∗,k)
T (A∗,l)

k = 1, . . . ,
M
MB

, l = k, . . . ,
M
MB

,
(8)

where Bkl is sub-matrix in the k−th row and l−th column
and A∗,k is defined as:

A∗,k =




φ1,(k−1)·MB+1 · · · φ1,k·MB

...
. . .

...
φi,(k−1)·MB+1 · · · φi,k·MB

...
. . .

...
φN,(k−1)·MB+1 · · · φN,k·MB




. (9)

Figure 2: M×M square matrix which is partitioned into
MB ×MB blocks. Main diagonal of matrix is represented
by red color and illustrates the symmetry of matrix. Blocks,
which must be computed, are represented by green color.

The size of block MB is chosen so that MB is multiple of
M and there is no swapping, i.e.:

MB · (MB +2 ·N) · prec < size of RAM [B], (10)

where prec is size of data type in bytes.

4. Experimental results

The presented modification of the RBF approximation
method has been tested on synthetic and real data. Let us
introduce results for two real datasets.

The first dataset was obtained from LiDAR data of the
Serpent Mound in Adams Country, Ohio†. The second
dataset is LiDAR data of the Mount Saint Helens in Ska-
mania Country, Washington†. Each point of these datasets is

associated with its elevation. Summary of the dimensions of
terrain for the given datasets is in Table 1.

Table 1: Summary of the dimensions of terrain for tested
datasets. Note that one feet [ft] corresponds to 0.3048 meter
[m].

Dimensions Serpent Mound St. Helens

number of points 3,265,110 6,743,176

lowest point [ft] 166.7800 3,191.5269

highest point [ft] 215.4800 8,330.2219

width [ft] 1,085.1199 26,232.3696

length [ft] 2,698.9601 35,992.6861

For experiments, two different radial basis functions have
been used, see Table 2. Shape parameters α for used RBFs
were determined experimentally with regard to the quality of
approximation and they are presented in Table 3. Note that
value of shape parameter α is inversely proportional to range
of datasets.

Table 2: Used RBFs

RBF type φ(rrr)

Gaussian RBF global e−(αr)2

Wendland’s φ3,1 local (1−αr)4
+(4αr+1)

Table 3: Experimentally determined shape parameters α
for used RBFs

RBF
shape parameter

Serpent Mound St. Helens

Gaussian RBF α = 0.05 α = 0.0004

Wendland’s φ3,1 α = 0.01 α = 0.0001

The set of reference points equals the subset of the given
dataset for which we determine the RBF approximation.
Moreover, the distribution of reference points is uniform and
the set of reference points has a cardinality 10,000 in both
experiments.

Approximation of Mount Saint Helens for both BRFs and
its original are shown in Figure 3a-3c. In Figure 3b can be
seen that the RBF approximation with the global Gaussian
RBFs cannot preserve the sharp rim of a crater. Further, vi-
sualization of magnitude of error at each point of the original
points cloud is presented in Figure 4 and Figure 5. It can be
seen that the RBF approximation with the global Gaussian

† http://www.liblas.org/samples/
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(a) Original (b) Gaussian RBF, α = 0.0004 (c) Wendland’s RBF φ3,1, α = 0.0001

(d) Original (e) Gaussian RBF, α = 0.05 (f) Wendland’s RBF φ3,1, α = 0.01

Figure 3: Serpent Mound in Adams Country, Ohio (top) and Mount Saint Helens is Skamania Country, Washington (bottom)

RBFs returns worse result than RBF approximation with lo-
cal Wendland’s φ3,1 basis functions in terms of the error. In
Table 4 can be seen the value of mean absolute error, its de-
viation and mean relative error for both approximations.

Figure 4: Approximation of Mount Saint Helens with
10,000 global Gaussian basis functions with shape parame-
ter α = 0.0004 false-colored by magnitude of error.

Results of the RBF approximation for Serpent Mound and
its original are shown in Figure 3d-3f. It can be seen that

Figure 5: Approximation of Mount Saint Helens with
10,000 local Wendland’s φ3,1 basis functions with shape pa-
rameter α = 0.0001 false-colored by magnitude of error.

the approximation using local Wendland’s φ3,1 basis func-
tion (Figure 3f) returns again better result than approxima-
tion using the global Gaussian RBF (Figure 3e) in terms of
the error. It is also seen in Figure 6 and Figure 7 where mag-
nitude of error at each point of original points cloud is vi-
sualized. Moreover, we can see that the highest errors occur

12
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Figure 6: Approximation of the Serpent Mound with
10,000 global Gaussian basis functions with shape parame-
ter α = 0.05 false-colored by magnitude of error.

on the boundary of terrain, which is a general problem of
RBF methods. Value of mean absolute error, its deviation
and mean relative error due to elevation for both used RBFs
are again mentioned in Table 4.

Mutual comparison both datasets in terms of the mean rel-
ative error (Table 4) indicates that mean relative error for
Serpent Mount is smaller than for Mount Saint Helens. It
is caused by the presence of vegetation, namely forest, in
LiDAR data of the Mount Saint Helens. This vegetation op-
erates in our RBF approximation as noise and therefore the
resulting mean relative error is higher.

The implementation of the RBF approximation has been
performed in Matlab and tested on PC with the following
configuration:

• CPU: Intel® Core™ i7-4770 (4× 3.40GHz + hyper-
threading),
• memory: 32 GB RAM,
• operating system Microsoft Windows 7 64bits.

For the approximation of the Serpent Mound with 10,000
local Wendland’s φ3,1 basis function with shape parameter
α = 0.01 the running times for different sizes of blocks were
measured. These times were converted relative to the time
for 100× 100 blocks and are presented in Figure 8. We can
see that for the approximation matrix which is partitioned
into small blocks (i.e. smaller than 25×25 blocks) the time
performance is large. This is caused by overhead costs. On
the other hand, for the approximation matrix which is par-

Figure 7: Approximation of the Serpent Mound with 10,000
local Wendland’s φ3,1 basis functions with shape parameter
α = 0.01 false-colored by magnitude of error.

titioned into large blocks (i.e. larger than 125× 125 blocks)
the running time begins to grow above the permissible limit
due to memory swapping.
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Table 4: The RBF approximation error for testing datasets and different radial basis functions. Note that one feet [ft] corre-
sponds to 0.3048 meter [m].

Error
Serpent Mound St. Helens

Gaussian RBF Wendland’s φ3,1 Gaussian RBF Wendland’s φ3,1

mean absolute error [ft] 0.4477 0.2289 44.4956 12.1834
deviation of error [ft] 1.4670 0.1943 680.3659 169.2800
mean relative error [%] 0.0024 0.0012 0.0087 0.0023

5. Conclusions

This paper presents a new approach to the RBF approxima-
tion of large datasets. The proposed approach uses symmetry
of matrix and partitioning matrix into blocks, thus prevent-
ing memory swapping. The experiments made proved that
the proposed approach is able to determine the RBF approx-
imation for large dataset. Moreover, from the experimental
results we can see that use of a local RBFs is better than
global RBFs, if data are sufficiently sampled. Futher, it is
obvious that approximation using the global Gaussian RBFs
has problems with the preservation of sharp edges. The ex-
periments made also proved that RBF methods have prob-
lems with the accuracy of calculation on the boundary of an
object, which is a well known property, and the magnitude of
the RBF approximation error is influenced by the presence
of a noise.

For the future work, the RBF approximation method can
be explored in terms of lower sensitivity to noise, more ac-
curate calculation on the boundary or better approximation
of sharp edges and improvements of the computational cost
without loss of approximation accuracy.
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A B S T R A C T

Approximation of scattered data is often a task in many engineering problems. The Radial Basis Function (RBF)
approximation is appropriate for big scattered datasets in n–dimensional space. It is a non-separable approxi-
mation, as it is based on the distance between two points. This method leads to the solution of an overdetermined
linear system of equations.
In this paper the RBF approximation methods are briefly described, a new approach to the RBF approximation of
big datasets is presented, and a comparison for different Compactly Supported RBFs (CS-RBFs) is made with
respect to the accuracy of the computation. The proposed approach uses symmetry of a matrix, partitioning the
matrix into blocks and data structures for storage of the sparse matrix. The experiments are performed for syn-
thetic and real datasets.

1. Introduction

Interpolation and approximation are the most frequent operations
used in computational techniques. Several techniques have been devel-
oped for data interpolation or approximation, but they usually require an
ordered dataset, e.g. rectangular mesh, structured mesh, unstructured
mesh, etc. However, in many engineering problems, data are not ordered
and they are scattered in n–dimensional space, in general. Usually, in
technical applications the conversion of a scattered dataset to a semi-
regular grid is performed using some tessellation techniques. However,
this approach is quite prohibitive for the case of n–dimensional data due
to the computational cost.

Interesting techniques are based on the Radial Basis Function (RBF)
method, which was originally introduced by Hardy (1971, 1990). A good
introduction to RBFs is given by Buhmann (2003). RBF techniques are
widely used across many fields solving technical and non-technical
problems, e.g. surface reconstruction (Carr et al. (2001), Turk and
O'Brien (2002)), data visualization (Pepper et al. (2014)) and pattern
recognition. It is an effective tool for solving partial differential equations
(Hon et al. (2015), Li et al. (2013)). The RBF techniques are really
meshless and are based on collocation in a set of scattered nodes. These
methods are independent with respect to the dimension of the space. The
computational cost of the RBF approximation increases nonlinearly

(almost cubic) with the number of points in the given dataset and linearly
with the dimensionality of the data. Of course, there are other meshless
techniques such as discrete smooth interpolation (DSI) (Mallet (1989)),
kriging (Royer and Vieira (1984), Ma et al. (2014), Cressie (2015)),
which is based on statistical models that include autocorrelation, etc.

The radial basis functions are divided into two main groups of basis
functions: global RBFs and Compactly Supported RBFs (CS–RBFs)
(Wendland (2006)). In this paper, we will mainly focus on CS-RBFs.
Fitting scattered data with CS–RBFs leads to a simpler and faster
computation, because the system of linear equations has a sparse matrix.
However, an approximation using CS–RBFs is sensitive to the density of
the approximated scattered data and to the choice of a shape parameter.
Global RBFs are useful in repairing incomplete datasets and they are
insensitive to the density of scattered data. However, global RBFs lead to
a linear system of equations with a dense matrix and therefore they have
high computational and memory costs. Typical global RBFs are Gauss

ϕðrÞ ¼ e�ðαrÞ2 , inverse quadratic ð1þ ðαrÞ2Þ�1 and inverse multiquadric

ð1þ ðαrÞ2Þ�1=2, where α is shape parameter which defines behavior of
function. These RBFs are monotonically decreased with increasing radius
r, strictly positive definite, infinitely differentiable and convergent to

zero. Other global RBF is multiquadric
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðαrÞ2

q
which is mono-

tonically increased with increasing radius r, infinitely differentiable and
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divergent as radius increases. The last popular global RBF is thin plate
spline (TPS) r2logðrÞ which is shape parameter free and divergent as
radius increases. TPS has a singularity at the origin which is removable
for the function and its first derivative but this singularity is not
removable for the second derivative of TPS.

For the processing of scattered data we can use the RBF interpolation
or the RBF approximation. The unknown function sampled at given
points fxigN1 by values fhigN1 can be determined using the RBF interpo-
lation, e.g. presented by Skala (2015), as:

f ðxÞ ¼
XN
j¼1

cjϕ
�
rj
� ¼XN

j¼1

cjϕ
���x � xj

���; (1)

where the interpolating function f ðxÞ is represented as a sum of N RBFs,
each centered at a different data point xj and weighted by an appropriate
weight cj which has to be determined. This leads to a solution of linear
system of equations:

Ac ¼ h; (2)

where the matrix A ¼ fAijg ¼ fϕð����xi � xj
����Þg is N � N symmetric square

matrix, the vector c ¼ ðc1;…; cNÞT is the vector of unknown weights and
h ¼ ðh1;…; hNÞT is a vector of values in the given points. The disadvan-
tage of RBF interpolation is the large and usually ill-conditionedmatrix of
the linear system of equations. Note that the one of the possible solution
of ill-condition problems based on modified orthogonal least squares is
described in Chen and Li (2012). Moreover, in the case of an oversampled
dataset or intended reduction, we want to reduce the given problem, i.e.
reduce the number of weights and used basis functions, and preserve
good precision of the approximated solution. The approach which in-
cludes such a reduction is called the RBF approximation. In the following
section, the approach recently introduced in Skala (2013) will be
described in detail. This approach requires less memory and offers higher
speed of computation than the method using Lagrange multipliers (Fas-
shauer (2007)). Further, a new approach to RBF approximation of large
datasets is presented in Section 5. This approach uses symmetry of a
matrix, partitioning the matrix into blocks and data structures for storage
of the sparse matrix (see Section 4).

2. RBF approximation

For simplicity, we assume that we have an unordered dataset
fxigN1 2 E2. However, this approach is generally applicable for n-
dimensional space. Further, each point xi from the dataset is associated
with a vector hi 2 Ep of the given values, where p is the dimension of the
vector, or a scalar value, i.e. hi 2 E1. For an explanation of the RBF
approximation, let us consider the case when each point xi is associated
with a scalar value hi, e.g. a 21=2D surface. Let us introduce a set of new
reference points (knots of RBF) fξjgM1 , see Fig. 1.

These reference points may not necessarily be in a uniform grid. A
good placement of the reference points improves the approximation of
the underlying data. For example, when a terrain is approximated,
placement along features such as break lines leads to better approxima-
tion results. The number of reference points ξj is M, where M≪N. The
RBF approximation is based on the distance computation between the
given point xi and the reference point ξj.

The approximated value is determined as (see Skala (2013)):

f ðxÞ ¼
XM
j¼1

cjϕ
�
rj
� ¼XM

j¼1

cjϕ
���x � ξj

���; (3)

where ϕðrjÞ is an RBF centered at point ξj and the approximating function
f ðxÞ is represented as a sum of these RBFs, each associated with a
different reference point ξj, and weighted by a coefficient cj which has to

be determined.
When inserting all data points xi, with i ¼ 1;…;N, into (3), we get an

overdetermined linear system of equations.

hi ¼ f ðxiÞ ¼
XM
j¼1

cjϕ
�����xi � ξj

����� ¼XM
j¼1

cjϕi;j i ¼ 1;…;N (4)

The linear system of equation (4) can be represented in a matrix
form as:

Ac ¼ h; (5)

where Aij ¼ ϕð��xi � ξj
��Þ is the entry of the matrix in the i-th row and j-th

column, the number of rows is N≫M, M is the number of unknown
weights c ¼ ðc1;…; cMÞT , i.e. a number of reference points, and h ¼
ðh1;…; hNÞT is a vector of values in the given points. The presented sys-
tem is overdetermined, i.e. the number of equations N is higher than the
number of variables M. This linear system of equations can be solved by
the least squares method (LSE) as ATAc ¼ ATh.

3. RBF approximation with polynomial reproduction

Themethodwhich was described in Section 2 can have problems with
stability and solvability. Therefore, the RBF approximant (3) is usually
extended by a polynomial function PkðxÞ of the degree k. This approach
was introduced in Majdisova and Skala (2016).

The approximated value f ðxÞ is determined as:

f ðxÞ ¼
XM
j¼1

cjϕ
���x � ξj

���þ PkðxÞ; (6)

where ξj are reference points specified by a user. The approximating
function f ðxÞ is represented as a sum of M RBFs, each associated with a
different reference point ξj, and weighted by an appropriate coefficient cj,
and PkðxÞ is a polynomial function of degree k. It should be noted that the
polynomial function affects only global behavior of the approximated
dataset. In practice, a linear polynomial P1ðxÞ:

P1ðxÞ ¼ aTx þ a0 (7)

is used (e.g. P1ðxÞ ¼ a1x þ a2y þ a0 for x 2 E2). Geometrically, the co-
efficient a0 determines the “vertical” placement of the hyperplane and
the expression aTx represents the inclination of the hyperplane.

Thus, the following overdetermined linear system of equations
is obtained:

hi ¼ f ðxiÞ ¼
XM
j¼1

cjϕ
���xi � ξj

���þ aTx þ a0

¼
XM
j¼1

cjϕi;j þ aTx þ a0 i ¼ 1;…;N:

(8)

The linear system of equation (8) can be represented in a matrix
form as:

Acþ Pk ¼ h; (9)

where Aij ¼ ϕð����xi � ξj
����Þ is the entry of the matrix in the i-th row and j-th

column, c ¼ ðc1;…; cMÞT is the vector of unknownweights, Pi ¼ ðxT
i ;1Þ is

the vector of basis functions of linear polynomial at point xi, k ¼
ðaT ; a0ÞT is the vector of the coefficient for the linear polynomial and h ¼
ðh1;…; hNÞT is the vector of values in the given points. The presented
linear system of equations can be solved by the minimization of the
square of error, which leads to a system of linear equations:
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�
ATA ATP
PTA PTP

��
c
k

�
¼
�
ATh
PTh

�
: (10)

Finally, it should be noted that the polynomial of degree k>1 can be
used in general. However, in this case, it is necessary be careful because
the polynomial of higher degree in combination with a large range of
data might cause numerical problems. This is due to the fact that the
elements of sub-matrix PTP in relation (10) contain much larger values
than elements of sub-matrix ATA in the same relation.

4. Data structures for storage of the sparse matrix

If the CS-RBFs are used, the matrix of the linear system of equations is
sparse. Therefore, the most important part of each approximation using
CS-RBFs is a data structure used to store the approximation matrix. There
are a number of existing sparse matrix representations, e.g. Bell and
Garland (2009), �Simecek (2009), each with different computational
characteristics, storage requirements and methods of accessing and
manipulating entries of the matrix. The main difference among existing
storage formats is the sparsity pattern, or the structure of the nonzero
elements, for which they are best suited. For our purpose, the coordinate
format is used, which is briefly described in the following.

The coordinate (COO) format is the simplest storage scheme. The
sparse matrix is represented by three arrays: data, where the NNZ

nonzero values are stored, row, where the row index of each nonzero
element is kept, and col, where the column indices of the nonzero values
are stored.

Example of the COO format for matrix Q:

Q¼

0
BBBBBB@

1 0 6 0 0

9 2 0 7 0

0 1 3 0 8

4 0 2 4 0

0 5 0 0 0

1
CCCCCCA

row ¼ ½0 0 1 1 1 2 2 2 3 3 3 4 �
col ¼ ½0 2 0 1 3 1 2 4 0 2 3 1 �
data ¼ ½1 6 9 2 7 1 3 8 4 2 4 5 �

So, if the COO format is used for representation of matrix Q (in form
as described above) and the equation y ¼Qx, where x is vector of the
given values, has been solved, the following pseudocode is used for
calculation:

∀i ¼ 0;…;N : y½i� ¼ 0

for i ¼ 0;…;NNZ � 1 do
yrow½i� ¼ yrow½i� þ data½i�⋅xcol½i�

Note that vector of given values has form x ¼ ½x0; x1;…; xM �, whereM
is number of columns of matrix Q, and the resulting vector is
y ¼ ½y0; y1;…; yN �, where N is number of rows of matrix Q.

The benefit of the COO format is its generality, i.e. an arbitrary sparse
matrix can be represented by the COO format and the required storage is
always proportional to the number of nonzero values.

The disadvantage of the COO format is that both row and column
indices are stored explicitly, which reduces the efficiency of memory
transactions (e.g. read operations).

5. RBF approximation for large data

In practice, real datasets contain a large number of points, which
results in high memory requirements for storing the matrix A of the
overdetermined linear system of equation (5). Unfortunately, we do not
have an unlimited capacity of RAM memory; therefore, calculation of

unknown weights cj for RBF approximation would be prohibitively
computationally expensive due to memory swapping, etc. In this section,
a proposed solution to this problem is described.

In Section 2, it was mentioned that an overdetermined system of
equations can be solved by the least squares method. For this method the
square M �M matrix:

B ¼ ATA (11)

is to be determined. Advantages for computation of the matrix B are that
it is a symmetric matrix and, moreover, only two vectors of length N are
needed for determination of one entry, i.e.:

bij ¼
XN
k¼1

ϕki⋅ϕkj; (12)

where bij is the entry of the matrix B in the i�th row and j�th column.
To save memory requirements and to prevent data bus (PCI) over-

loading, block operations with matrices are used. Based on the above
properties of the matrix B, only the upper triangle of this matrix is
computed. Moreover, the matrix B is partitioned into MB �MB blocks,
see Fig. 2, and the calculation is performed sequentially for each block:

Fig. 2. M �M square matrix which is partitioned into MB �MB blocks. The color red is
used to denote the main diagonal of the matrix and illustrates the symmetry of the matrix.
The color green is used to denote the blocks which must be computed. (For interpretation
of the references to colour in this figure legend, the reader is referred to the web version of
this article.)

Fig. 1. The RBF approximation and reduction of points. Note that the reference points
(knots) can be distributed arbitrarily.
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Bkl ¼ ðA�;kÞT ðA�;lÞ

k ¼ 1;…
	
;
M
MB



; l ¼ k;…;

	
M
MB



;

(13)

where Bkl is a sub-matrix in the k�th row and l�th column, the index �
denotes that the sub-matrix A�;k contains all values in the appropriate
block of columns (given by the index k) of the original matrix A, i.e. A�;k
is defined as:

A�;k ¼

0
BBBB@

ϕ1;ðk�1Þ⋅MBþ1 ⋯ ϕ1;minfk⋅MB ;Mg
⋮ ⋱ ⋮

ϕi;ðk�1Þ⋅MBþ1 ⋯ ϕi;minfk⋅MB ;Mg
⋮ ⋱ ⋮

ϕN;ðk�1Þ⋅MBþ1 ⋯ ϕN;minfk⋅MB ;Mg

1
CCCCA; (14)

where the size of this matrix is N �MB except of the last block and the
index k denotes the k�th block of columns. This enables the computation
of big datasets on hardware systems with limited main memory.

The size of block MB is chosen so that swapping of memory (RAM)
does not occur during the computation, i.e.:�
M2 þ 2⋅MB⋅N

�
⋅prec < size of RAM ½B�; (15)

where prec is the size of the data type in bytes. Note that this relation is
valid when thematrixA of the overdetermined linear system of equations
is dense. If CS-RBFs are used for RBF approximation and the matrix A of
the overdetermined linear system of the equation is stored using special
data structures, see Section 4, then the optimal size of block MB is much
larger than given in relation (15). For this case, the optimal size of block
MB should satisfy:�
M2 þ 2⋅NNZ

�
⋅prec < size of RAM ½B�; (16)

where NNZ is the maximum number of non-zero elements in sub-matrices

A�;k; k ¼ 1;…;

	
M
MB



. Naturally, it is obvious that the size of the block

should be selected as the largest possible value satisfying (16).
Moreover, note that the elements in sub-matrices A�;k are zero for far

away points, when CS-RBFs are used. Therefore, we do not want to
compute the elements for all pairs of points, so the kd-tree (A.2 in Fas-
shauer (2007)) is used for computing the sub-matricesA�;k. Algorithm for
determination of the sparse sub-matrix A�;k is described in Algorithm 1.

In general, the mentioned approach could be used in combination
with massive parallel computing on GPU, but the calculation would have
to be done in single precision to exploit the full potential of GPU. How-
ever, in this case, problems with numerical stability and solvability of the
RBF approximation can be expected.

Finally, note that it is possible to modify this approach easily for the
RBF approximation with a polynomial reproduction, see Section 3.

6. Experimental results

The presented RBF approximation method was tested on synthetic
and real data. The implementation was performed in Matlab. Experi-
mental results for one synthetic and two real datasets follow.

Table 3
Experimentally determined shape parameters α for the used CS-RBFs.

CS-RBF Shape parameter

Synthetic Serpent Mound St. Helens

Wendland's ϕ3;0 α ¼ 0:707 α ¼ 0:01 α ¼ 0:0005
Wendland's ϕ3;1 α ¼ 0:500 α ¼ 0:01 α ¼ 0:0007
Wendland's ϕ3;3 α ¼ 0:250 α ¼ 0:01 α ¼ 0:0005

Table 2
Used Wendland's CS-RBFs ϕd;s. Wendland's functions are univariate polynomial of de-
gree ⌊d=2⌋þ 3sþ 1, they are always positive definite up to a maximal space dimension
d and their smoothness is C2s . For more details see Chapter 11.2 in Fasshauer (2007).

CS-RBF ϕðrÞ
ϕ3;0 ð1� αrÞ2þ
ϕ3;1 ð1� αrÞ4þð4αr þ 1Þ
ϕ3;3 ð1� αrÞ8þð32ðαrÞ3 þ 25ðαrÞ2 þ 8αr þ 1Þ

Table 1
Overview information for the tested datasets. The Axis-Aligned Bounding Boxes (AABBs) of
the tested datasets have a size width� length� relief, i.e. xrange � yrange � zrange . Note that
one foot [ft] corresponds to 0.3048 m [m].

Synth. Serpent Mound St. Helens

Number of pts. 1089 3;265;110 6;743;176
Number of ref. pts. 81 10; 000 10;000
Relief [ft] 1.238 48.70 5138.69
Width [ft] 1.000 1;085:12 26;232:37
Length [ft] 1.000 2;698:96 35;992:69

Fig. 3. Franke's function defined as (17).

Fig. 4. Original datasets: Mount Saint Helens (left); Serpent Mound (right).

Z. Majdisova, V. Skala Computers and Geosciences 109 (2017) 51–58

54

73



The synthetic dataset has a Halton distribution (A.1 in Fasshauer
(2007)) of points and each point is associated with a value from Franke's
function (Franke (1979)):

f ðxÞ ¼ f1ðxÞ þ f2ðxÞ þ f3ðxÞ � f4ðxÞ;

f1ðxÞ ¼ 0:75⋅exp

 
� ð9x1 � 2Þ2

4
� ð9x2 � 2Þ2

4

!
;

f2ðxÞ ¼ 0:75⋅exp

 
� ð9x1 þ 1Þ2

49
� ð9x2 þ 1Þ2

10

!
;

f3ðxÞ ¼ 0:50⋅exp

 
� ð9x1 � 7Þ2

4
� ð9x2 � 3Þ2

4

!
;

f4ðxÞ ¼ 0:20⋅exp
�� ð9x1 � 4Þ2 � ð9x2 � 7Þ2�;

(17)

where x ¼ ðx1; x2Þ is a point for which the associated value has been
computed. This function is shown in Fig. 3.

The first real dataset was obtained from LiDAR data of Mount Saint
Helens in Skamania County, Washington,1 see Fig. 4 (left). The second
real dataset is LiDAR data of the Serpent Mound in Adams County,
Ohio21, see Fig. 4 (right).

Each point of these datasets is associatedwith its elevation. Moreover,
as a first step, the real datasets are translated so that their estimated
center of gravity corresponds to the origin of the coordinate system. This
step is used due to the limitation of the influence of dataset placement in
space. The set of reference points is a subset of the given dataset, for
which we determine the RBF approximation. In addition, reference
points are uniformly distributed within a given area. Table 1 gives an
overview of the used datasets.

Because the global RBFs affect the entire domain of given datasets,
which is usually undesirable behavior, the CS-RBFs have been used for
the presented experiments. All CS-RBFs from the catalog of RBFs in
Fasshauer (2007) (see D.2.7) have been used for the experiments.
Depending on the quality, the obtained results are divided into three
groups. The results are presented for a representative of each group,
see Table 2.

Note that the notation ð1� αrÞqþ means:

ð1� αrÞqþ ¼
� ð1� αrÞq if 0 � αr � 1
0 if αr>1

; (18)

where r is the variable which denotes the distance of the given point from
the appropriate reference point and α is a shape parameter. The shape

parameters α for the used CS-RBFs were determined experimentally with
regard to the quality of approximation and they are presented in Table 3.
Some papers have also been published on choosing the optimal shape
parameter α, e.g. Franke (1982), Rippa (1999), Fasshauer and Zhang
(2007), Scheuerer (2011). Note that the value of the shape parameter α is
inversely proportional to the width, length, and number of points of
the datasets.

Fig. 5 presents the approximations of the synthetic dataset without
polynomial reproduction for all CS�RBFs.

In this figure, the surfaces are false-colored by the magnitude of the

Table 4
The RBF approximation error and density of least square matrix for the tested datasets and
different radial basis functions. Note that density of least square matrix expresses per-
centage of non-zero elements in matrix and that one foot [ft] corresponds to 0.3048 m [m].

Phenomenon without polynomial Wendland's with linear polynomial
Wendland's

ϕ3;0 ϕ3;1 ϕ3;3 ϕ3;0 ϕ3;1 ϕ3;3

Synthetic data
Mean
absolute
error [ft]

0.0041 0.0021 0.0019 0.0040 0.0019 0.0019

Deviation of
error [ft]

1.92E-5 6.06E-6 5.25E-6 1.90E-5 5.45E-6 5.12E-
6

Mean
relative
error [%]

0.0151 0.0076 0.0072 0.0150 0.0070 0.0072

Serpent Mound
Mean
absolute
error [ft]

0.173 0.141 0.130 0.164 0.139 0.129

Deviation of
error [ft]

0.072 0.047 0.037 0.068 0.047 0.037

Mean
relative
error [%]

0.015 0.012 0.011 0.014 0.012 0.011

Density of
LSE matrix
[%]

8.413 8.413 8.413 8.468 8.468 8.468

Mount St. Helens
Mean
absolute
error [ft]

12.568 11.589 9.881 12.129 10.935 9.773

Deviation of
error [ft]

188.595 165.574 100.738 159.139 122.659 98.993

Mean
relative
error [%]

0.013 0.012 0.010 0.012 0.011 0.010

Density of
LSE matrix
[%]

6.470 3.452 6.470 6.536 3.510 6.536

Fig. 5. Results for synthetic dataset false-colored by magnitude of absolute error: Wendland's RBF ϕ3;0, α ¼ 0:707 (left); Wendland's RBF ϕ3;1, α ¼ 0:500 (center) and Wendland's RBF ϕ3;3,
α ¼ 0:250 (right).

1 http://www.liblas.org/samples/.
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error. The error is defined as the absolute value of the difference between
Franke's function (17) and approximated function. It can be seen that for
the synthetic dataset, the RBF approximation with Wendland's ϕ3;3 basis
function returns the best result in terms of the error. On the contrary, the
worst result is obtained for the RBF approximation with Wendland's ϕ3;0

basis function. Table 4 shows three different error measures of the
datasets depending on the chosen basis functions: mean absolute error,
deviation and mean relative error.

These error measures are performed for approximation without
polynomial reproduction and for approximation with linear polynomial
reproduction. It can be seen that the RBF approximation with linear
polynomial reproduction produces slightly better results than the RBF
approximation without reproduction in terms of the error, but this
improvement seems to be insignificant.

The RBF approximation for the real datasets was solved using “block-
wise” approach described above. Approximations of Mount Saint Helens
dataset without polynomial reproduction for all CS-RBFs are shown
in Fig. 6a.

It illustrates the magnitude of error at each point of the original point
cloud. Moreover, the detail of a crater is shown for each approximation. It
can be seen that the RBF approximation with Wendland's ϕ3;3 basis
function returns the best results in terms of the error. On the contrary, the
worst result is obtained for the RBF approximation with Wendland's ϕ3;0

basis function again. For this approximation, sharp peaks are formed. It is
most evident around the rim of a crater. Also for the Mount Saint Helens
dataset, the three errormeasuresof the computedelevation for all usedCS-
RBFs and for both types of RBF approximation (i.e. approximationwithout
polynomial reproduction and approximation with linear polynomial

Fig. 6. Results for the tested real datasets false-colored by magnitude of absolute error.
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reproduction) are presented in Table 4. These results confirm the state-
ments above. Further, it can be seen that the RBF approximation with
linear reproduction again produces better results than the RBF approxi-
mation without reproduction, especially in terms of deviation of error.

The last presented experimental results are for the RBF approximation
of Serpent Mound without polynomial reproduction and are shown in
Fig. 6b. It illustrates the magnitude of error at each point of the original
point cloud. Moreover, the detail of Serpent Mound is shown for each
approximation. It can be seen that the RBF approximation with Wend-
land's ϕ3;3 basis function returns a slightly better result than RBF
approximationwithWendland'sϕ3;1 basis function in termsof the error for
the Serpent Mound dataset. The RBF approximation withWendland's ϕ3;0

basis function returns the worst results. These facts are mainly evident in
the details. Further, we can see that the highest errors occur on the
boundary of the terrain for all cases. The three error measures of the
elevation for all used CS�RBFs and for both types of RBF approximation
(i.e. approximation without polynomial reproduction and approximation
with linear polynomial reproduction) are presented in Table 4. These re-
sults again confirm the statements above. Further, it can be seen that the
RBFapproximationwith linearpolynomial reproductionproduces slightly
better results than the RBF approximation without reproduction in terms
of the error, but this improvement is not significant. The mutual com-
parison of both real datasets in terms of the deviation of error (Table 4)
indicates that RBF approximation with linear reproduction returns
considerably better results than RBF approximation without polynomial
reproduction if the range of associated values is large. Moreover, it should
benoted that the degreeof smoothness for the tested typeof real datasets is
lower than degree of smoothness for Wendland's ϕ3;1 andWendland's ϕ3;3

basis functions and, therefore, the comparison of RBF approximationwith
Wendland's ϕ3;1 basis function and RBF approximation with Wendland's
ϕ3;3 basis function returns less significant results. The situation is different
for comparison of RBF approximationwithWendland's ϕ3;0 basis function
and RBF approximation with Wendland's ϕ3;1 basis function where the
difference is significant. The signed errors for the Serpent Mound dataset
andWendland'sϕ3;1 basis function are shown in Fig. 7.We can see that the
signs are different at various locations. Similar results are obtained for the
rest of the experiments.

The implementation of the RBF approximation was performed in
MATLAB and tested on a PC with the following configuration:

� CPU: Intel® Core™ i7-4770 (4 � 3.40 GHz þ hyper-threading),
� memory: 32 GB RAM,
� operation system: Microsoft Windows 7 64 bits.

For the approximation of the Serpent Mound dataset with 10;000
local Wendland's ϕ3;1 basis functions with shape parameter α ¼ 0:01, the
running times for different sizes of blocks were measured. These
computational times are presented in Fig. 8b. We can see that the time
performance is large for the approximation matrix which is partitioned
into small blocks (i.e. smaller than 500 � 500 blocks). This is caused by
overhead costs and, moreover, each entry in the matrix A of the over-
determined linear system has to be calculated more times than for larger
sizes of block. On the other hand, the running time begins to rise above
the permissible limit due to memory swapping for the approximation
matrix which is partitioned into larger blocks (i.e. larger than 2500 �
2500 blocks).

The running time for determination of RBF approximation with the
mentioned parameters was divided into two steps. The running time
needed for calculation of all sub-matrices formed from the matrixA of the
original overdetermined linear system of equations by the block-wise
approach is determined in the first step. The running time needed for
calculation of the least square matrix ATA and for calculation of the
vector of unknown weights is measured in the second step. The com-
parison of the perceptual time performance of these two steps can be seen
in Fig. 8a. It can be seen that the most time-consuming part is the first
step, in which all needed sub-matrices are calculated (lower part in
the graph).

Fig. 8. Time performance for approximation of the Serpent Mound depending on the
block size.

Fig. 7. The signed errors for the Serpent Mound dataset and Wendland's RBF ϕ3;1 with
α ¼ 0:01: the positive error is colored white and the negative error is colored black.
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7. Conclusion

In this paper two different RBF approximation methods are experi-
mentally verified using one synthetic and two real datasets. The first
method is an RBF approximation without polynomial reproduction and
the second method is an RBF approximation with linear reproduction.
Moreover, a new approach to the RBF approximation of large datasets is
presented. The proposed approach uses symmetry of the matrix, parti-
tioning the matrix into blocks and block-wise solving which enables the
computation on systems with limited main memory. Because CS-RBFs
are used for approximation, data structures for storage of the sparse
matrix can be employed; thereby a larger size of blocks can be chosen
and the computational costs decrease. The experiments proved that the
proposed approach is fully applicable for the RBF approximation for
large datasets.

The experiments also showed that, depending on the quality of the
results, it is possible to divide the CS-RBFs from the catalog of RBFs
(D.2.7 in Fasshauer (2007)) into three groups. The results of the exper-
iments proved that RBF approximation with linear reproduction returns
better result than RBF approximation without polynomial reproduction,
particularly if the range of associated values is large. The experiments
also proved that the RBF methods have problems with the accuracy of
calculation on the boundary of an object, which is a well-known prop-
erty. The presented approach is directly applicable in GIS and geo-
science fields.

Future work will be aimed at improving the accuracy at the bound-
aries, on the computational performance without loss of approximation
accuracy and computation of optimal shape parameters. Also, the
“moving window” technique will be explored to increase speed of
computation.

Acknowledgments

The authors would like to thank their colleagues at the University of
West Bohemia, Plze�n, for their discussions and suggestions, and the
anonymous reviewers for their valuable comments. The research was
supported by the National Science Foundation GA�CR project GA17-
05534S and partially supported by SGS 2016-013 project.

References

Bell, N., Garland, M., 2009. Implementing sparse matrix-vector multiplication on
throughput-oriented processors. In: Proceedings of the Conference on High
Performance Computing Networking, Storage and Analysis. ACM, p. 18.

Buhmann, M.D., 2003. Radial Basis Functions: Theory and Implementations, vol. 12.
Cambridge university press.

Carr, J.C., Beatson, R.K., Cherrie, J.B., Mitchell, T.J., Fright, W.R., McCallum, B.C.,
Evans, T.R., 2001. Reconstruction and representation of 3d objects with radial basis
functions. August 12-17, 2001. In: Proceedings of the 28th Annual Conference on
Computer Graphics and Interactive Techniques, SIGGRAPH 2001, Los Angeles,
California, USA, pp. 67–76.

Chen, C., Li, Y., 2012. A robust method of thin plate spline and its application to DEM
construction. Comput. Geosci. 48, 9–16.

Cressie, N., 2015. Statistics for Spatial Data. John Wiley & Sons.
Fasshauer, G.E., 2007. Meshfree Approximation Methods with MATLAB, vol. 6. World

Scientific Publishing Co., Inc., River Edge, NJ, USA.
Fasshauer, G.E., Zhang, J.G., 2007. On choosing ”optimal” shape parameters for RBF

approximation. Numer. Algorithms 45 (1–4), 345–368.
Franke, R., 1979. A Critical Comparison of Some Methods for Interpolation of Scattered

Data. Tech. Rep. NPS53-79-003. NAVAL POSTGRADUATE SCHOOL MONTEREY CA.
Franke, R., 1982. Scattered data interpolation: tests of some methods. Math. Comput. 38

(157), 181–200.
Hardy, R.L., 1971. Multiquadratic equations of topography and other irregular surfaces.

J. Geophys. Res. 76, 1905–1915.
Hardy, R.L., 1990. Theory and applications of the multiquadric-biharmonic method 20

years of discovery 19681988. Comput. Math. Appl. 19 (8), 163–208.
Hon, Y.-C., �Sarler, B., Yun, D.-F., 2015. Local radial basis function collocation method for

solving thermo-driven fluid-flow problems with free surface. Eng. Anal. Bound. Elem.
57, 2–8.

Li, M., Chen, W., Chen, C., 2013. The localized RBFs collocation methods for solving high
dimensional PDEs. Eng. Anal. Bound. Elem. 37 (10), 1300–1304.

Ma, Y., Royer, J.-J., Wang, H., Wang, Y., Zhang, T., 08 2014. Factorial kriging for
multiscale modelling. J. South. Afr. Inst. Min. Metall. 114 (8), 651–659.

Majdisova, Z., Skala, V., 2016. A new radial basis function approximation with
reproduction. In: Blashki, K., Xiao, Y. (Eds.), Proceedings of the International
Conferences on Interfaces and Human Computer Interaction 2016, Game and
Entertainment Technologies 2016 and Computer Graphics, Visualization, Computer
Vision and Image Processing 2016. IADIS Press, pp. 215–222.

Mallet, J.-L., Apr. 1989. Discrete smooth interpolation. ACM Trans. Graph 8 (2), 121–144.
Pepper, D.W., Rasmussen, C., Fyda, D., 2014. A meshless method using global radial basis

functions for creating 3-d wind fields from sparse meteorological data. Comput.
Assisted Methods Eng. Sci. 21 (3–4), 233–243.

Rippa, S., 1999. An algorithm for selecting a good value for the parameter c in radial basis
function interpolation. Adv. Comput. Math. 11 (2–3), 193–210.

Royer, J.-J., Vieira, P.C., 1984. Dual Formalism of Kriging, g. verly et al. Edition, vol. 2. D.
Reidel Publishing Company.

Scheuerer, M., 2011. An alternative procedure for selecting a good value for the
parameter c in rbf-interpolation. Adv. Comput. Math. 34 (1), 105–126.

�Simecek, I., 2009. Sparse matrix computations using the quadtree storage format. In:
Proceedings of 11th International Symposium on Symbolic and Numeric Algorithms
for Scientific Computing (SYNASC 2009), pp. 168–173.

Skala, V., 2013. Fast interpolation and approximation of scattered multidimensional and
dynamic data using radial basis functions. WSEAS Trans. Math. 12 (5), 501–511.

Skala, V., 2015. Meshless interpolations for computer graphics, visualization and games.
May 4-8, 2015. In: Zwicker, M., Soler, C. (Eds.), Eurographics 2015-Tutorials.
Eurographics Association, Zurich, Switzerland.

Turk, G., O'Brien, J.F., 2002. Modelling with implicit surfaces that interpolate. ACM
Trans. Graph 21 (4), 855–873.

Wendland, H., 2006. Computational aspects of radial basis function approximation. Stud.
Comput. Math. 12, 231–256.

Z. Majdisova, V. Skala Computers and Geosciences 109 (2017) 51–58

58

77



Appendix F

Algorithm for Placement of Reference
Points and Choice of an Appropriate
Variable Shape Parameter for the RBF
Approximation

Majdišová, Z., Skala, V., Šmolík, M.
Accepted to:
Integrated Computer-Aided Engineering, IOS Press, ISSN 1069-2509, IF 4.904

78



Undefined 0 (2019) 1–0 1
IOS Press

Algorithm for Placement of Reference Points
and Choice of an Appropriate Variable Shape
Parameter for the RBF Approximation

Zuzana Majdisova a,∗, Vaclav Skala a and Michal Smolik a

a Department of Computer Science and Engineering, Faculty of Applied Sciences
University of West Bohemia, Plzeň, Czech Republic
E-mail: majdisz@kiv.zcu.cz, smolik@kiv.zcu.cz
URL: http://www.VaclavSkala.eu

Abstract. Many Radial Basis Functions (RBFs) contain a shape parameter which has an important role to ensure
good quality of the RBF approximation. Determination of the optimal shape parameter is a difficult problem. In
the majority of papers dealing with the RBF approximation, the shape parameter is set up experimentally or using
some ad-hoc method. Moreover, the constant shape parameter is almost always used for the RBF approximation,
but the variable shape parameter produces more accurate results. Several variable shape parameter methods, which
are based on random strategy or on an evolutionary algorithm, have been developed. Another aspect which has an
influence on the quality of the RBF approximation is the placement of reference points.

A novel algorithm for finding an appropriate set of reference points and a variable shape parameter selection
for the RBF approximation of functions y = f(x) (i.e. the case when a one-dimensional dataset is given and each
point from this dataset is associated with a scalar value) is presented. Our approach has two steps and is based
on exploiting features of the given dataset, such as extreme points or inflection points, and on comparison of the
first curvature of a curve. The proposed algorithm can be used for the approximation of data describing a curve
parameterized by one variable in multidimensional space, e.g. a robot path planning, etc.

Keywords: Radial basis functions, Approximation, Variable shape parameter, Curvature, Lagrange multipliers

1. Introduction

Radial basis functions (RBFs) are used to solve
many technical and non-technical problems. RBFs
are real-valued functions which depend only on
the distance from the fixed center point. A RBF
method was originally introduced by [1], [2]. It is
a powerful tool for the meshless interpolation and
approximation of scattered data, as space tessella-
tion is not required. Moreover, this method is inde-
pendent with respect to the dimension of the space.
RBF applications can be found in data visualiza-

*Corresponding author. E-mail: majdisz@kiv.zcu.cz

tion [3], surface reconstruction [4], [5], [6], vector
fields visualization [7], solving partial differential
equations [8], [9], etc.

RBFs can be divided into two main groups of
basis functions: global RBFs and Compactly Sup-
ported RBFs (CS-RBFs) [10]. The use of CS-RBFs
leads to a simpler and faster computation, because
a system of linear equations has a sparse matrix.
However, approximation using CS-RBFs is quite
sensitive to the density of given scattered data.
Global RBFs are useful in repairing incomplete
datasets and they are significantly less sensitive to
the density of data as they cover the whole domain.
However, they lead to a linear system of equations
with a dense and ill-conditioned matrix.

0000-0000/19/$00.00 © 2019 – IOS Press and the authors. All rights reserved79



2 Z. Majdisova et al. / Determination of Reference Points and Variable Shape Parameter for RBF Approximation

Choice of an appropriate shape parameter of
RBFs is extremely important to ensure good ap-
proximation. Several articles have been dedicated
to introducing different algorithms to compute a
constant value as an appropriate value for the shape
parameter [11], [12], [13], [14], etc. Many of these
focus on finding the minimal error in computations
or are based on convergence analysis. Other arti-
cles show that variable shape parameters are use-
ful instead of a fixed shape parameter. Sufficient
conditions to guarantee a unique solution of the
RBF interpolation with variable shape parameters
are derived in [15] for CS-RBFs and in [16] for
global RBFs. The variable shape parameters are
determined by used of genetic algorithm [17] and
minimization of the local cost function [18], [19] or
numerically by minimizing the root-mean-square
errors [20]. For these purposes, there are many
other papers which are dealing with the general
global optimization such as [21], [22], [23]. Other
approaches generate the variable shape parameters
from an estimated range when different distribu-
tions of values are used [24], [25], use Neural Net-
work RBF approach [26], [27], [28], [29], [30] or or-
togonal least square [31]. However, the approaches
mentioned do not reflect features of the given data.

Our approach for 1.5D case eliminating above
mentioned drawbacks will be described in this pa-
per. The proposed method consists of two steps.
In the first step, the Thin-Plate Spline (TPS) func-
tion is used. The second step is focused on RBFs
which have smoothness at least C3 at the origin
(e.g. Gaussian RBF, Wendland’s φ3,2, etc.). This
condition follows from the requirement that the
first curvature of curves is smooth, which is a direct
result of the algorithm described below. The pro-
posed approach leads to a significant compression
of the given data and obtaining their analytical
form. Our approach can be applied to many real
data in the different areas of interest, e.g. data
obtained from GPS navigation describing the ter-
rain profile [32], data for recovering smooth robot
trajectory [33], total electron content data [34], etc.

In the following section, the fundamental theo-
retical background needed for description of the
proposed algorithm will be mentioned. The pro-
posed two steps algorithm, including the deriva-
tion of the appropriate variable shape parameter,
will be described in Section 3. The results of the
proposed algorithm for synthetic and real data will
be presented in Section 4.

2. Theoretical Background

In this section, some theoretical aspects needed
for description of the proposed algorithm for place-
ment of reference points and choice of an appropri-
ate variable shape parameter for the RBF approxi-
mation will be introduced.

2.1. RBF Approximation with a Variable Shape
Parameter

We assume that we have an unordered dataset
{xi}N1 ∈ En, where n denotes the dimension of
space. Further, each point xi from the dataset
is associated with a vector hi ∈ Ep of the given
values, where p is the dimension of the vector, or
a scalar value, i.e. hi ∈ E1. In the following, we
will deal with scalar data approximation, i.e. the
case when each point xi is associated with a scalar
value hi is considered. Let us introduce a set of
new reference points (knots of RBF) {ξj}M1 ∈ En,
where n denotes the dimension of space, M is the
number of reference points and M � N .

These reference points may not necessarily have
any special distribution as uniform distribution, etc.
However, a good placement of the reference points
improves the approximation of the underlying data.
The RBF approximation is based on the distance
computation between the given point xi and the
reference point ξj .

As generally known, most RBFs are dependent
on the shape parameter α, which influences the
radius of support. In the case of the fundamental
RBF approximation (see [35], [36], [37]), the shape
parameter of the RBF used is set to a constant
value for all M RBFs, see Fig. 1a. Nevertheless,
it is possible to set a different shape parameter
for each of the M RBFs, where the shape param-
eter can be determined depending on features of

(a) Constant shape parame-

ter α

(b) Variable shape parame-

ters {αj}

Fig. 1. RBF collocation functions centered at reference

points {ξj} ∈ E2.
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the neighborhood of the reference point at which
a given RBF is centered or some other criterion
can be used. In such case, it is the RBF approxi-
mation with a variable shape parameter and the
approximated value is determined as:

f(x) =
M∑

j=1

cjφ (rj , αj) =
M∑

j=1

cjφ (‖x− ξj‖, αj) , (1)

where φ(rj , αj) is an RBF with shape parameter
αj centered at point ξj , see Fig. 1b. The approx-
imating function f(x) is represented as a sum of
the M RBFs with a variable shape parameter, each
associated with a different reference point ξj , and
weighted by a coefficient cj which has to be deter-
mined.

It can be seen that the overdetermined linear
system of equations is obtained when inserting all
points xi, with i = 1, . . . , N , into (1):

hi = f(xi) =
M∑

j=1

cjφ (‖xi − ξj‖, αj) i = 1, . . . , N . (2)

Using the matrix notation, the linear system of
equations (2) can be expressed:




φ (r11, α1) · · · φ (r1M , αM )
...

. . .
...

φ (ri1, α1) · · · φ (riM , αM )
...

. . .
...

φ (rN1, α1)· · ·φ (rNM , αM )







c1
...
cM




=




h1

...
hi
...
hN




, (3)

where rij = ‖xi − ξj‖ is the distance between the
given point xi and the reference point ξj .

Equation (3) can also be expressed in the form:

AV ar c = h. (4)

The presented system is again overdetermined,
M � N , and can be solved by the least squares
method, QR decomposition, etc.

The use of variable shape parameter αj disrupts
the proof of non-singularity of approximation ma-
trix AV ar. In practice, however, the constant shape
parameter does not prevent approximation matrix
becoming so ill-conditioned as to be essentially sin-
gular [37], and the benefits of variable shape pa-
rameter are considered substantial. Moreover, in
[38], it is shown that the variable shape parameter
is improving the conditionality.

2.2. RBF Approximation with a Variable Shape
Parameter and Lagrange Multipliers

In many cases, it is required that the approxi-
mate function must have exactly the given values
{sk}K1 ∈ E1 at some set of points {ηk}K1 ∈ En,
where K � N . It follows that the aim is finding
the RBF approximation of the dataset in the form
(1) subject to K constraints:

{f(ηk) = sk}K1 . (5)

This problem can be solved as minimization of the
square error of the RBF approximation subject to
K constraints and the method of Lagrange mul-
tipliers can be used for this purpose. Specifically,
our goal is to minimize the following function:

F (c,λ) =
N∑

i=1

(
M∑

j=1

cjφ (‖xi − ξj‖, αj)− hi
)2

+
K∑

k=1

λk

(
M∑

j=1

cjφ (‖ηk − ξj‖, αj)− sk
)

= (AV arc− h)2 + (cTRT − sT ) · λ.

(6)

This minimum is obtained by differentiating equa-
tion (6) with respect to c and λ and finding the
zeros of those derivatives. This leads to equations:

∂F

∂c
= 2AT

V arAV arc− 2AT
V arh+RTλ = 0

∂F

∂λ
= Rc− s = 0,

(7)

which leads to a system of linear equations:

(
2AT

V arAV ar R
T

R 0

)(
c
λ

)
=

(
2AT

V arh
s

)
. (8)

The presented system has an (M +K)× (M +K)
symmetric matrix, where K � M , and can be
solved by the LU decomposition, QR decomposi-
tion, etc. Then the RBF approximation of the given
dataset can be expressed using equation (1) and
the vector c which was computed from the linear
system (8). However, the matrix AV ar depends
on shape parameters and their estimation will be
explained in the following sections.
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x

h

Stationary inflection points

Non-stationary inflection pointsEndpoints
Local extrema

(a) The significant points of the function are

local extrema, stationary and non-stationary
inflection points and endpoints.

x

h

xi

xi+1

xi+2

xi+3

�l=w1

�l+1=w2

w3

(b) Four points {xi, . . . ,xi+3} from the dataset

are interpolated by cubic curve and three signif-
icant points {wt} of this curve are shown: (red

squares) the points added to the set of suspicious

points, (gray triangle) a point discarded because
the condition (12) is not valid.

Fig. 2. Finding significant points of given data

2.3. Determination of Significant Points and

Their Properties

In this section, the proposed approach for de-

termination of the significant points of the given

dataset will be described. These points have a large

influence on the quality of the RBF approximation.

The paper is focused on a 1.5D case, i.e. we have

given a dataset {xi}N1 ∈ E1 and each point xi from

this dataset is associated with a value hi ∈ E1.

The local extrema, stationary and non-stationary

inflection points and endpoints of the dataset are

included among significant points, see Fig. 2a. The

points which will be used for the determination

of the set of significant points of the given data

will be called the set of suspicious points {ψl}NS

l=1,

i.e. a set of significant points is a reduced set of

suspicious points.

First, the ordering of the given dataset is per-

formed. After that, the set of suspicious points is

determined. For these purposes, every four points

{xi, . . . ,xi+3} from the given data are interpolated

by a cubic curve in the form:

gq(x) = β1q · x3 + β2q · x2 + β3q · x+ β4q

q = 1, . . . , N − 3,
(9)

which leads to the solution of the (N − 3) linear

systems of the size 4×4. Then, the significant points

{wt} of this cubic are determined, see Fig. 2b. The

significant points for the cubic curve (9) meet at

least one of the following conditions:

∂gq
∂x

= 0 or
∂2gq
∂x2

= 0, (10)

which leads in our case to the following set:

{wt} =
{
− β2q

3β1q

}

∪
{
(β2

2q−3β1qβ3q)>0:
−β2q±

√
β2
2q−3β1qβ3q

3β1q

} (11)

The significant point wt is further added to the
set of suspicious points {ψl}NS

l=1, if the necessary
condition:

xi ≤ wt ≤ xi+3 (12)

is valid. Moreover, the functional value gq(ψl) of
the associated cubic is calculated at such a suspi-
cious point ψl :

gq(ψl) = β1q ·ψ3
l +β2q ·ψ2

l +β3q ·ψl+β4q (13)

and the absolute value of the first curvature∣∣1kq(ψl)
∣∣ of the associated cubic is determined (us-

ing the symbolic manipulation):

∣∣1kq(ψl)
∣∣ =

∣∣1k (gq(ψl))
∣∣ =

=

∣∣∣∣∣
6β1qψl+2β2q(

1+(3β1qψ2
l +2β2qψl+β3q)

2
)3/2

∣∣∣∣∣ .
(14)

It should be noted that absolute values of the first
curvature for the endpoints are calculated using
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the cubic curve interpolating points {x1, . . . ,x4},
or {xN−3, . . . ,xN}.

The set of suspicious points may contain two

or more identical points or points very close to

identical. This problem is caused by the fact that

one significant point can be obtained from up to

three cubics. Therefore, the reduction of the set of

suspicious points is performed. The resulting set of

significant points of the given data {χu} is deter-

mined as follows. First, the endpoints are added

to the set of significant points {χu}, their associ-

ated functional values are added to set {g(χu)}
and their associated absolute values of the first

curvatures are added to set
{∣∣1k(χu)

∣∣}. Now, let δ

is the average step between the given sorted points,

then the reduction of the set of suspicious points

can be performed as follows. The suspicious points

which meet the condition:

(‖ψl − x1‖ ≤ δ) or (‖ψl − xN‖ ≤ δ) , (15)

are deleted. Further, the subset Ψu of suspicious
points, where each point meets the relation:

Ψu =
{
ψl̂ : ‖ψl̂ −ψ1‖ ≤ δ

}
, (16)

is removed from the set of suspicious points {ψl}
and the new significant point is determined from
them by averaging:

χu =

∑
ψl̂

|Ψu|
, (17)

where |Ψu| is a size (cardinality) of the subset Ψu.
Moreover, the associated functional value g(χu)
and the associated absolute value of the first cur-
vature

∣∣1k(χu)
∣∣ are determined in the same way.

The process is repeated until the set of suspicious
points is not empty.

The whole algorithm for finding the set of sig-
nificant points of the given data, the calculation
of the first curvatures and associated functional
values in them is summarized in Algorithm 1.

Algorithm 1: Determination of the set of significant points {χu}S1 , the absolute values of the first

curvatures
{∣∣1k(χu)

∣∣}S
1

and the associated functional values {g(χu)}S1 .

Input: given points {xi}N1 ∈ E1 and their associated scalar values {hi}N1 ∈ E1, the average step
between given sorted points δ

Output: significant points, their associated first curvatures and their associated functional values{
χu,

∣∣1k(χu)
∣∣ , g(χu)

}S
1

1 Sort the given points {xi}N1 in ascending order.
2 for i = 1, . . . , N − 3 do
3 Determine the significant points {wt} for cubic curve defined by {xi, . . . , xi+3}, (eq. (9), eq. (11)).
4 if i = 1 then
5 Add the triplet

{
x1,
∣∣1k1(x1)

∣∣ , h1

}
to the output (using eq. (14)).

6 foreach wt do
7 if xi ≤ wt ≤ xi+3 then
8 Add the point wt to the set of suspicious points {ψl}.
9 Compute the first curvature

∣∣1ki(wt)
∣∣, eq. (14), and the functional value gi(wt), eq. (13), and

add these values to appropriate sets

10 if i = (N − 3) then
11 Add the triplet

{
xN ,

∣∣1kN−3(xN )
∣∣ , hN

}
to the output (using eq. (14)).

12 From the set of suspicious points {ψl}, delete all points such that (15) is valid.
13 while the set of suspicious points is not empty do
14 Find Ψu =

{
ψl̂ : ‖ψl̂ −ψ1‖ ≤ δ

}
in the set of suspicious points {ψl}.

15 Add the triplet

{∑
ψl̂

|Ψu| ,
∑|1kq(ψl̂)|
|Ψu| ,

∑
gq(ψl̂)

|Ψu|

}
to the output (|Ψu| is cardinality of Ψu).

16 Delete all points ψl̂ ∈ Ψu and their associated values from the sets {ψl},
{∣∣1kq(ψl)

∣∣} and {gq(ψl)}.
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3. Proposed Two Steps Algorithm

In this section, the proposed two steps algorithm
for the RBF approximation of the given data (in
form y = f(x)) including the determination of
placement of reference points and the derivation
of an appropriate variable shape parameter will be
described.

3.1. First Step of the Proposed Approach

In this section, the first step of our approach
will be described. The main goal of this step is to
perform the primary RBF approximation of the
given dataset such that the input data for the sec-
ond step of our method will be symmetrically dis-
tributed around the x-axis. This will be done using
inflection points (stationary and non-stationary)
and endpoints of the given data. Moreover, this
step executes the shift of associated values {hi}N1
so that the newly obtained associated values are
better approximated using the RBF, i.e. the prob-
lematic course of the sampled function as in Fig. 3
will be eliminated.

x0

h

Fig. 3. The course of the sampled function which is poorly

approximated using the RBF.

In the first step of our algorithm, the significant
points of the given data {χu} are firstly found
using the method introduced in Section 2.3. From
the set of significant points, only inflection points
(stationary or non-stationary) and endpoints are
used, see Fig. 4a.

Such a set of points is marked as {x̂v}M1
1 , where

M1 is number of points of interest, and the set
of their associated functional values is marked as
{ĝv}M1

1 . The significant point χu is an inflection
point (stationary or non-stationary) if its associ-
ated absolute value of the first curvature

∣∣1k(χu)
∣∣

is zero (or close to zero).
Now, the RBF interpolation with polynomial

reproduction [39] is performed for the set {x̂v}M1
1 ,

where each point x̂v is associated with a value
ĝv, see Fig. 4b. This means that the vector of
unknown weights cI = (cI1, . . . , cIM1) and vector
of coefficients for the polynomial aI are computed
from the linear system of equations:

(
AI PI
P T
I 0

)(
cI
aI

)
=

(
h
0

)
, (18)

where the index I means the interpolation case, the
vector of associated values is h = (ĝ1, . . . , ĝM1

)T ,
the matrix AI = {Aij} = {φTPS (‖x̂i − x̂j‖)} and
the matrix PI = {Pi} =

{(
x̂Ti , 1

)}
.

The Thin-Plate Spline (TPS) is used as φTPS , i.e.:

φTPS(r) = r2 log(r) =
1

2
· r2 log(r2). (19)

x

h

Stationary inflection points

Non-stationary inflection points

Endpoints

(a) In the first step, stationary inflection points,

non-stationary inflection points and endpoints are
used as the significant points of the function.

h

x

Stationary inflection points
Endpoints Non-stationary inflection points

TPS interpolation - 1st pass

(b) Original function and the RBF interpolation

for selected significant points (result of the first
step of our approach).

Fig. 4. The first step of our proposed method.
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Algorithm 2: Determination of shifted associated values {ĥi}N1 , i.e. the first step of the proposed
approach.

Input: given points {xi}N1 and their associated scalar values {hi}N1
Output: interpolation points for the TPS interpolation {x̂v}M1

1 , vector of weights for the TPS inter-

polation cI , vector of coefficients for polynomial aI and shifted associated values {ĥi}N1
1 Determine the significant points of the given data {χu}S1 and calculate the functional values and

absolute values of the first curvatures in them, Algorithm 1.
2 Add χ1 to set {x̂v} and g(χ1) to set {ĝv}
3 for u = 2, . . . , S − 1 do
4 if

∣∣1k(χu)
∣∣ is zero then

5 Add χu to set {x̂v} and g(χu) to set {ĝv}

6 Add χS to set {x̂v} and g(χS) to set {ĝv}
7 Compute the vector of weights cI = (cI1, . . . , cIM1) and vector of polynomial coefficients aI , eq. (18)

8 Compute shifted values ĥi, where i = 1, . . . , N , eq. (20)

This global RBF is chosen because it is not depen-
dent on a shape parameter.

When the vector of weights cI and vector of
coefficients aI are determined, the new associated
values (i.e. shifted associated values) for original
dataset {xi}N1 can be computed:

ĥi = hi −
M1∑

v=1

cIvφTPS (‖xi − x̂v‖)− P (xi)

i = 1, . . . , N ,

(20)

where φTPS is given by (19).
The whole algorithm for the first step of the

proposed approach, i.e. determination of shifted
associated values {ĥi}N1 , is summarized in Algo-
rithm 2.

3.2. Second Step of the Proposed Approach

This section will be focused on the second step
of our approach. In the input of this step, we as-
sume that we have given the unordered dataset
{xi}N1 ∈ E1 and each point xi from this dataset

is associated with a shifted scalar value ĥi (these
values were calculated in the first step), see Fig. 5.
Our goal is to determine the RBF approximation
with a variable shape parameter and Lagrange mul-
tipliers for the described data. Therefore, the set
of reference points has to be determined. It should
be noted that the placement of reference points
has a significant influence on the quality of the
approximation. If the reference points are located

at the significant points of the given data, then

better approximation results are obtained.

h

x

Local extrema
Points for TPS interpolation from 1st pass

Fig. 5. Course of the input sampled function for the second
step of the proposed approach. The set of reference points

for the second step of our approach are marked. Hexagons

indicate input points for the TPS interpolation from the
first step (i.e. stationary and non-stationary inflection points

and endpoints) and circles denote local extrema of shifted

functional values.

Therefore, the significant points {χ̂u} of the

input data for the second step are found using

the method which was introduced in Section 2.3.

This set of significant points is further used as

the reference points of the RBF approximation

{ξj}M1 . It should be noted that the inflection points

(stationary and non-stationary) and endpoints from

the second step correspond to the input points for

the TPS interpolation {x̂v}M1
1 from the first step,

i.e. only local extrema are newly added, see Fig. 5.
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3.3. Determination of Appropriate Variable Shape
Parameter

The variable shape parameters of RBF αj at
appropriate reference points ξj can be determined
when the reference points and absolute values of the
first curvatures in them are known. Our approach
for determining the variable shape parameters is
based on a requirement that the validity of the
following equality is required:

(
ĥmax − ĥmin

)
·
∣∣1kφ(0, αj)

∣∣ = |φ(0)| ·
∣∣1k(ξj)

∣∣ , (21)

where ĥmax = max
i=1,...,N

(ĥi) is the maximum of

shifted associated values and ĥmin = min
i=1,...,N

(ĥi)

is the minimum of shifted associated values, φ(0)
is the value of the radial basis function at the
center,

∣∣1kφ(0, αj)
∣∣ is the absolute value of the first

curvature for radial basis function φ(‖x− ξj‖) at
point x = ξj . The above mentioned equality is
derived based on the consideration that the RBF
curve centered at reference point ξj has the greatest
influence from all used RBFs on the shape of the
approximating function at this point, and therefore,
the match of the absolute value of first curvature
is required. Moreover, the normalization of both
function is taken to account. The absolute value of
the first curvature for the RBF curve centered at
reference point ξj is obtained as:

∣∣1kφ(r, αj)
∣∣ =

∣∣∣∣
φrr(r, αj)

(1 + φ2
r(r, αj))

3/2

∣∣∣∣ , (22)

where φrr(r, αj) denotes the second derivative and
φr(r, αj) denotes the first derivative of the RBF.

From equality (21), the following equation can
be derived for variable shape parameter αj of the
RBF:

αj =
1

2

√√√√ |1k(ξj)| · |φ(0)|
ω ·
(
ĥmax − ĥmin

) , (23)

where ĥmax is the maximum of shifted values, ĥmin
is the minimum of shifted values,

∣∣1k(ξj)
∣∣ is the as-

sociated absolute value of the first curvature, which
was determined by the algorithm described in Sec-
tion 2.3, and ω is a constant parameter depending
on the type of RBF used, see Table 1.

Table 1

Different RBFs and their parameter ω, eg. (23).

RBF φ(r) ω

Gaussian RBF e−(αr)2 2

Inverse quadric 1
1+(αr)2 2

Wendland’s φ3,2 (1− αr)6+(35(αr)2 + 18αr + 3) 56

It should be noted that this approach can be
used only for RBFs which have smoothness of at
least C3 at the origin, because the first curvature
of the RBF curve should be smooth.

The last problem which has to be solved is the
case when shape parameter αj associated with
reference point ξj is zero (i.e. the reference point
is an inflection point of the given data), because
for such shape parameter the constant function
would be obtained. In these cases, correction of the
shape parameter is made. Specifically, the weighted
average of shape parameters associated with the
neighboring points is established and is used as the
value of shape parameter αj .

The whole algorithm for determination of appro-
priate variable shape parameters is summarized in
Algorithm 3.

3.4. Algorithm summary

In this section, a summary of the whole pro-
posed algorithm is provided. First, the first step
of the proposed approach is performed, see Algo-
rithm 2, i.e. the TPS interpolation and shift of

associated values
{
ĥi

}N
1

are determined, which

leads to the elimination of the problematic course
of the sampled function. Next, the reference points
{ξj}M1 are found and their appropriate absolute
values of the first curvatures are calculated for the
newly determined data, see Algorithm 1. Then,
the appropriate variable shape parameters {αj}M1
are computed, see Algorithm 3. After that, the
RBF approximation can be performed. For these
purposes, the RBF approximation with a variable
shape parameter and Lagrange multipliers, see Sec-
tion 2.2, is used. Therefore, the constraints (see
(5)) have to be defined. For the proposed approach,
the following constraints are used:

{
f(x1) = ĥ1 = 0, f(xN ) = ĥN = 0

}
, (24)
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Algorithm 3: Determination of the variable shape parameters αj at appropriate reference points ξj .

Input: reference points and their associated absolute values of the first curvatures
{
ξj ,
∣∣1k(ξj)

∣∣}M
1

, the

minimum of shifted associated values ĥmin = min
i=1,...,N

(ĥi), the maximum of shifted associated

values ĥmax = max
i=1,...,N

(ĥi) and the coefficient ω for used RBF (see Table 1)

Output: variable shape parameters associated with appropriate reference points {αj}M1
1 Sort the given pairs

{
ξj ,
∣∣1k(ξj)

∣∣}M
1

in ascending order with respect to coordinates of reference points.

2 for j = 1, . . . ,M do

3 αj =
1

2

√
|1k(ξj)| · |φ(0)|

(hmax − hmin) · ω
4 for j = 1, . . . ,M do
5 if αj is zero then
6 if j = 1 then
7 αj = αj+1

8 else if j = M then
9 αj = αj−1

10 else

11 αj =
αj−1 · ‖ξj − ξj−1‖+ αj+1 · ‖ξj+1 − ξj‖

‖ξj+1 − ξj−1‖

i.e. the given values {sk} = {0, 0} have to be

strictly respected at endpoints {ηk} = {x1,xN}.
Now, using eq. (8), the vector of unknown weights

c = (c1, . . . , cM )
T

can be determined.

Finally, the approximated value is determined

as:

f(x) =

M1∑

v=1

cIvφTPS (‖x− x̂v‖) + P (x)

+
M∑

j=1

cjφ (‖x− ξj‖, αj) ,

(25)

where cI = (cI1, . . . , cIM1
) is the vector of weights

for the TPS interpolation, φTPS is the Thin-Plate-

Spline, {x̂v}M1
1 are input points for the TPS inter-

polation, M1 is number of interpolation points for

the first step, P (x) is polynomial function of first

order, c = (c1, . . . , cM ) is the vector of weights for

the RBF approximation, φ is the RBF used (see

Table 1), {ξj}M1 is the set of reference points, M is

number of reference points for the second step and

{αj}M1 are appropriate variable shape parameters.

4. Experimental Results

The above-proposed method of the RBF approx-
imation has been tested on different datasets using
Matlab. Moreover, a comparison with the RBF
approximation using the constant shape parameter
for different distributions of the set of reference
points has been made using different radial basis
functions, see Table 1.

4.1. Distribution of Reference Points

For the comparison of our approach, the follow-
ing sets of reference points were used:

Uniform points: This set contains the points dis-
tributed uniformly at a given interval.

Epsilon points: This is a special distribution of
points which is based on uniform points.
Specifically, the points from uniform distribu-
tion are randomly drift about value from a
range (−εx, εx), where εx responds to a quar-
ter of the step of uniform points.

Optimal points: The set of reference points from
the second step of the proposed approach is
used.
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4.2. Testing datasets

A uniform distribution of points was used for
the testing data. The given dataset contains 200
points uniformly distributed in the interval [0, 1].
Moreover, each point from this dataset is associated
with a function value at this point. For this purpose,
many different functions have been used. Results
for some representative functions are presented
below.

f1(x) = sin
(
15x2

)
+ 5x (26)

f2(x) =(4.88x−1.88)·sin
(
(4.88x−1.88)2

)
+ 1 (27)

f3(x) = e10x−6 · sin
(
(5x− 2)2

)
+ (3x− 1)3 (28)

4.3. Experimental Results and Comparisons

The experimental results for the proposed ap-
proach will be presented and their comparison with
results for another RBF approximation using the
constant shape parameter for different distribu-
tions of reference points will be made. The shape
parameters α for the RBFs used, in the case of
approximation with the constant shape parameter,
were determined experimentally with regard to the
quality of the approximation, i.e. they were selected
the shape parameters α for which the lowest mean
absolute error of the approximation was obtained.
Moreover, the RBF approximation using the con-
stant shape parameter was applied in two ways.
The first one is that the RBF approximation with
the constant shape parameter was performed for
the original input data. The second one is that the
original input data was preprocessed and then the
RBF approximation with the constant shape pa-
rameter was applied. This preprocessing consists of
the application of the first step from the proposed
approach to the original input data, i.e. the RBF
approximation using the constant shape parameter

is applied to shifted data. The setups for presented
experiments are presented in Table 2.

The trends of the original data for the different
experiments from Table 2 are shown in Fig. 6 (top).
Figure 7 presents the results for the different ex-
periments in which each point is associated with
a value from some sampling function (26) - (28)
and some RBF from Table 1 is used. The specific
choice of the sampling function and RBF for each
experiment is mentioned in Table 2. Using the pro-
posed approach, M significant points (see Table 2)
were found for the chosen datasets and M1 of them
(see Table 2) were classified as inflection points or
endpoints. These M1 significant points were used
for the TPS interpolation in the first step. The
trends of the data after the first step, i.e. after per-
forming the shift of associated values, can be seen
in Fig. 6 (bottom) for the different experiments
from Table 2. The points for the TPS interpolation
from the first step and reference points used for
the second step for the different experiments are
visualized in Fig. 6 (bottom) on the shifted data
and in Fig. 6 (top) on the original data.

Figure 7 (left), in addition to the RBF approxi-
mation using the proposed approach, also presents
the results of the RBF approximation using the
constant shape parameter, where the set of refer-
ence points has uniform, epsilon or optimal distri-
bution and contains M points (see Table 2). In this
case, the RBF approximation using the constant
shape parameter was applied to the original input
data, i.e. the preprocessing is not included. The
magnitudes of error for these approximations can
be seen in Fig. 7 (right). The error is defined as the
absolute value of the difference between the sam-
pling function, some of the equations (26) - (28),
and the approximated function. The differences of
frequencies of errors for different experiments are
shown in Fig. 8. Moreover, the three basic error
measures (mean absolute error, deviation of error
and mean relative error) for all experiments men-

Table 2

Experimental setups - {hi}Ni=1 indicates the sampling function of the associated values, N is size of input dataset, M1 is
number of interpolation points for the first step, M is number of reference points for the second step and φ(r) is RBF used.

{hi}Ni=1 N M1 M φ(r)

Experiment no. 1 f1, eq. (26) 200 7 13 Gaussian RBF

Experiment no. 2 f2, eq. (27) 200 7 13 Inverse quadric

Experiment no. 3 f3, eq. (28) 200 6 11 Wendland’s φ3,2
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(a) Experiment no. 1, first step (b) Experiment no. 2, first step (c) Experiment no. 3, first step

(d) Experiment no. 1, second step (e) Experiment no. 2, second step (f) Experiment no. 3, second step

Fig. 6. Trends of input data for the first step (top) and trends of input data for the second step (bottom) for different
experiments, see Table 2. The sets of reference points for both steps are marked.

Table 3

The RBF approximation error for the tested datasets and different initial configurations.

Phenomenon

original data shifted data

proposed uniform epsilon optimal uniform epsilon optimal

approach ref. pts. ref. pts. ref. pts. ref. pts. ref. pts. ref. pts.

Experiment no. 1

mean absolute error 3.13E-03 8.55E-03 8.20E-03 6.21E-03 1.23E-02 1.22E-02 9.09E-03

deviation of error 3.71E-06 1.01E-04 7.56E-05 2.11E-05 1.74E-04 1.62E-04 1.48E-04

mean relative error 1.17E-03 3.18E-03 3.05E-03 2.31E-03 4.59E-03 4.54E-03 3.38E-03

Experiment no. 2

mean absolute error 9.49E-03 1.80E-02 1.77E-02 1.18E-02 2.23E-02 2.23E-02 1.52E-02

deviation of error 9.94E-05 5.24E-04 6.09E-04 1.37E-04 5.51E-04 6.06E-04 1.21E-04

mean relative error 7.94E-03 1.51E-02 1.48E-02 9.83E-03 1.86E-02 1.86E-02 1.27E-02

Experiment no. 3

mean absolute error 7.52E-02 2.04E+00 1.98E+00 8.12E-02 2.14E+00 2.37E+00 1.45E-01

deviation of error 8.62E-03 1.37E+01 1.48E+01 2.18E-02 1.67E+01 1.58E+01 4.79E-02

mean relative error 1.75E-02 4.74E-01 4.61E-01 1.89E-02 4.98E-01 5.52E-01 3.37E-02
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(a) Results for experiment no. 1 (b) Absolute errors for experiment no. 1

(c) Results for experiment no. 2 (d) Absolute errors for experiment no. 2

(e) Results for experiment no. 3 (f) Absolute errors for experiment no. 3

Fig. 7. Results of the RBF approximation (left) and their errors (right) for different initial configurations and different

experiments, see Table 2. The RBF approximation with the constant shape parameter is applied to the original data, i.e. the

preprocessing is not included. The initial configurations are: constant shape parameter and uniform reference points (uniform),
constant shape parameter and epsilon reference points (epsilon), constant shape parameter and optimal reference points

(optimal) and the proposed approach (note that values of the proposed method are nearly equal to the exact ones).

tioned are shown in Table 3. It can be observe that

the proposed approach returns better results than

the other methods in terms of the error.

The results of comparison of the proposed ap-
proach with the RBF approximation using the con-
stant shape parameter for different distributions
of the set of reference points and different exper-
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Experiment no. 1

(a) Proposed approach vs. uniform ref-

erence points.

(b) Proposed approach vs. epsilon ref-

erence points.

(c) Proposed approach vs. optimal ref-

erence points.

Experiment no. 2

(d) Proposed approach vs. uniform ref-

erence points.

(e) Proposed approach vs. epsilon ref-

erence points.

(f) Proposed approach vs. optimal ref-

erence points.

Experiment no. 3

(g) Proposed approach vs. uniform ref-

erence points.

(h) Proposed approach vs. epsilon ref-

erence points.

(i) Proposed approach vs. optimal ref-

erence points.

Fig. 8. Difference histograms of approximation errors for different experiments, see Table 2. The RBF approximation with the
constant shape parameter is applied to the original data, i.e. the preprocessing is not included.

iments from Table 2 when the preprocessing was

used, i.e. the approximation was applied to shifted

data, see Fig. 6 (bottom), have the similar visual

results as when the preprocessing is not included,

and therefore, these experiments are presented only

by the three basic error measures, see Table 3.

The proposed algorithm was applied on data for

recovering smooth robot trajectory in the space

which can be computed as the curve parameter-

ized by time. Description of results for this experi-

ment follows. The two separate functions, x(t) and

y(t), each representing its respective coordinate

and depending on time t on which the proposed

algorithm was used, are shown in Fig. 9 (a). These

two functions are represented the parametric curve

which is presented together with the original data

in Fig. 9 (b). The histograms of absolute errors for

both functions x(t) and y(t) when the proposed ap-
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(a) Results of proposed approach - parametric representation (b) Results of proposed approach

(c) Histogram of absolute errors for pro-
posed approach

(d) Curve x(t) - proposed approach vs.
uniform reference points

(e) Curve y(t) - proposed approach vs.
uniform reference points

Fig. 9. Recovering the smooth robot trajectory from real data [40] using the proposed RBF approximation (N = 407 - number

of given points for both curves x(t) and y(t), M1x = 38 and M1y = 28 - number of points for the TPS interpolation, Mx = 63
and My = 50 - number of reference points for the second step of the proposed algorithm.

proach is used can be seen in Fig. 9 (c). Finally, the
differences of frequencies of errors for comparison
with the RBF approximation using the constant
shape parameter for uniform distribution of set of
reference points is presented in Fig. 9 (d) - (e). It
can be seen that the proposed approach returns
better results than the other methods in terms of
the error. Moreover, the proposed algorithm is able
to reconstruct and smoothly connect a path even
if data is missing for a certain period of time. It
should be noted that the smooth connection of
path is the key property for robot path planning.

Further, the application of the proposed ap-
proach on real dataset which represents the terrain
profile (2711 points) was performed and the com-
parison with the RBF approximation using the con-
stant shape parameter for uniform distribution of

the set of reference points is presented, see Fig. 10.
It can be seen that the proposed approach can well
approximate the global trend of terrain profile for
a small set of reference points. The further improv-
ing of result could be obtained e.g. by application
of some incremental method. Moreover, it can be
seen that the proposed approach returns again bet-
ter results than the other methods in terms of the
error.

It can be concluded that the RBF approximation
for which the distribution of the set of reference
points does not reflect the features of the approxi-
mated data and the number of reference points is
minimal in terms of usability, i. e. uniform and ep-
silon distribution in our experiments, returns much
worse results than the approximation for which
features of the given data are reflected.
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(a) Results of proposed approach. (b) Histogram of relative errors for pro-
posed approach.

(c) Proposed approach vs. uniform ref-
erence points.

Fig. 10. Result of the proposed RBF approximation for real dataset which represents the terrain profile (N = 2711 - number

of given points, M1 = 30 - number of points for the TPS interpolation and M = 55 number of reference points for the second
step of the proposed algorithm).

5. Conclusion

In this paper, a new algorithm for the radial
basis function (RBF) approximation of functions
y = f(x) with the variable and adaptive shape
parameter based on curve curvature behavior is
presented. The proposed method has two steps
based on exploiting features of the given dataset,
such as extreme points and inflection points. The
first step of the proposed approach is applying the
global RBF interpolation of the selected subset of
significant points, which leads to an adaptive shift
of the given data in terms of associated values. Af-
ter that, the RBF approximation with the variable
shape parameter is performed on modified data.
The set of reference points is derived using signif-
icant points of the shifted data and the variable
shape parameters are determined according to the
first curvature in them.

The experiments proved that the proposed
method gives significantly better results over other
relevant competing methods. Moreover, it can be
observed that the RBF approximation for which
features of the given data are not respected is not
capable of competing with the RBF approxima-
tion respecting data features, especially when the
number of reference points is small.

The proposed method significantly eliminates
problems with a shape parameter estimation inher-
ited from the RBF’s general properties. The pro-
posed algorithm can be used for the RBF approxi-
mation of a curve which is parameterized by one
variable in multidimensional space. In future, the
proposed approach is to be extended for explicit
functions of two variables, i.e. to higher dimensions.
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Abstract. Stationary points of multivariable function which represents
some surface have an important role in many application such as com-
puter vision, chemical physics, etc. Nevertheless, the dataset describing
the surface for which a sampling function is not known is often given.
Therefore, it is necessary to propose an approach for finding the station-
ary points without knowledge of the sampling function.

In this paper, an algorithm for determining a set of stationary points
of given sampled surface and detecting the bindings between these sta-
tionary points (such as stationary points lie on line segment, circle, etc.)
is presented. Our approach is based on the piecewise RBF interpolation
of the given dataset.

Keywords: Stationary points · RBF interpolation
Shape parameter · Shape detection · Nearest neighbor

1 Introduction

Stationary points of the given explicit function f(x) are points where the gra-
dient of the function f(x) is zero in all directions, i.e. all partial derivatives are
zero:

∇f(x) = 0 x ∈ En, i.e.

∂f(x)

∂xk
= 0 k = 1, . . . , n,

(1)

where n denotes the dimension of space. The knowledge of stationary points
is required in many areas that are used a multidimensional data analysis, e.g.
[1–5]. The significant features of the given dataset can be determined using the
set of stationary points. This properties can be further used for improving the
quality of the RBF approximation [6,7], etc. In the technical applications, the
sampling function is not often known and only the dataset describing the given
surface is specified. Therefore, it is necessary determining the stationary points
without knowledge of the sampling function. Moreover, for a higher dimension

c© Springer Nature Switzerland AG 2019
R. Silhavy et al. (Eds.): CoMeSySo 2018, AISC 859, pp. 213–224, 2019.
https://doi.org/10.1007/978-3-030-00211-4_20
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of space n ≥ 2, it is possible that the stationary points of given surface are not
only isolated but they can be formed into line segments, circles or some other
shapes. A new approach for searching of bindings between stationary points will
be described in this paper. Knowledge of these bindings is suitable, for example,
for pruning purposes.

In the following sections, the fundamental the RBF interpolation will be
described. The finding of stationary points of surface using the RBF interpo-
lation will be described in Sect. 3. Moreover, the method, how the bindings
between stationary points are searching, is introduced in this section. In the
section Sect. 4, the results of our proposed algorithm will be presented. Finally,
a final discussion of results will be performed.

2 RBF Interpolation

In this section, the RBF interpolation method, recently introduced, e.g. in [8,9],
and its properties are described.

We assume that we have an unordered dataset {xi}N
1 ∈ En, where n denotes

the dimension of space and N is the number of given points. Further, each point
xi from the dataset is associated with a vector hi ∈ Ep of the given values, where
p is the dimension of the vector, or a scalar value, i.e. hi ∈ E1. In the following,
we will deal with scalar data interpolation, i.e. the case when each point xi

is associated with a scalar value hi is considered. Our goal is determined the
unknown function which is sampled at given points {xi}N

1 by values {hi}N
1 . For

these purposes, it can be used the RBF interpolation which is based on the
distance computation between two points xi and xj from the given dataset.

The interpolated value can be determined as:

f(x) =

N∑

j=1

cjφ(rj) =

N∑

j=1

cjφ (‖x − xj‖2) , (2)

where the interpolating function f(x) is represented as a sum of N RBFs, each
centered at a different data points xj and weighted by an appropriate weight cj

which has to be determined, see Fig. 1.
Applying (2) for all data points xi, i = 1, . . . , N , we get a linear system of

equations:

hi = f(xi) =
N∑

j=1

cjφ (‖xi − xj‖2) i = 1, . . . , N . (3)

The linear system of equations can be represented in a matrix form as:

Ac = h, (4)

where the matrix A = {Aij} = {φ (‖xi − xj‖2)} is N × N symmetric square
interpolation matrix, the vector c = (c1, . . . , cN )T is the vector of unknown
weights and h = (h1, . . . , hN )T is a vector of values in the given points. This
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Fig. 1. Data values, the RBF collocation functions, the resulting interpolant.

linear system of equations can be solved by the Gauss elimination method, the
LU decomposition, etc.

From the above, it can be seen that, in order to solve the interpolation
problem, the distance matrix and a radial basis expansion are used.

3 Proposed Approach

In this section, determination of stationary points of the given dataset is
described. Moreover, the approach includes the method for searching of bindings
between stationary points because whole shape of stationary points may lie on
the sampled surface.

3.1 Piecewise Approach for Determination of Stationary Points

For simplicity we assume that we have given dataset {xi}N
1 ∈ E2 and each

point xi from this dataset is associated with a scalar value hi ∈ E1. Further,
for purposes of determination of stationary points, we assume that the given
dataset contains the points on a Nx × Ny regular grid, where Δx and Δy are
real numbers representing its grid spacing. Moreover, the row-major ordering of
the given data is performed at first. After that, the piecewise approach is applied
on the given data.

The process which is performed at each step of the piecewise approach
is following. Every sixteen points {xm}16

1 = {xi,j , . . . ,xi,j+3, . . . ,xi+3,j , . . . ,
xi+3,j+3} from the given dataset, where i ∈ {1, . . . , Ny − 3} denotes the row
index and j ∈ {1, . . . , Nx − 3} denotes the column index, are interpolated by
the RBF interpolation (2), i.e. the linear system (4) has to be solved and the
vector of weights ĉ = (c1, . . . , c16) is computed. It mean that during one step
of proposed approach, the RBF interpolation for 3Δx × 3Δy area, where Δx
and Δy are real numbers representing the input grid spacing, is performed, see
Fig. 2a.
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Fig. 2. Proposed piecewise approach

Then, the stationary points {sq} of this interpolation function are determined
using (1). Specifically, for stationary points of the RBF interpolation function
the nonlinear system of equations:

0 =

16∑

m=1

cm
φ′ (‖x − xm‖2)

‖x − xm‖2
∗ (x − xm) , (5)

where φ′(r) is the derivation of RBF function φ with respect to variable r, ∗
denotes the element-wise multiplication and ĉ = (c1, . . . , c16) is the vector of
weights, has to be solved. The solution of (5), i.e. the stationary points {sq} of
the RBF interpolation, is searched for the domain defined as:

xi,j + εmin ≤ sq ≤ xi+3,j+3 − εmax,

εmin =

⎧
⎪⎪⎨
⎪⎪⎩

[
Δx
2 , 0

]
if i = 1[

0, Δy
2

]
if j = 1[

Δx
2 , Δy

2

]
otherwise

εmax =

⎧
⎪⎪⎨
⎪⎪⎩

[
Δx
2 , 0

]
if i = Ny − 3[

0, Δy
2

]
if j = Nx − 3[

Δx
2 , Δy

2

]
otherwise

(6)

where Δx and Δy are real numbers representing the input grid spacing, Nx

indicates the number of grid column and Ny is the number of grid rows, see
Fig. 2a, and the resulting set is added to the set of stationary points {sl}. It
should be noted, that the values εmin and εmax include the correction for the
boundary areas.

The determination of stationary points of a function corresponds to the prob-
lem of finding critical points of the vector field, where the vector field is defined
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by Eq. (5) for our purposes, and, therefore the method for determining critical
points [10,11] may be used for obtaining the result.

The advantage of the above mentioned process is that the matrix A of the
linear system (4) for the RBF interpolation, is not dependent on the position of
the given points (the matrix is dependent only on the distances between given
points) and, therefore, this matrix is constant for all steps of piecewise approach.
It should be noted that the approximation by a quadric surface could be used
instead of the RBF interpolation, but the experimental results proved that this
variant returns worse results in terms of stationary point locations.

The set of stationary points in the current form {sl} may contain two iden-
tical points or points very close to identical. This problem is caused by the fact
that one stationary point can be obtained from more RBF interpolations. The
situation is illustrated in Fig. 2b. However, this problem can be solved by reduc-
tion of the set of stationary points. Then, the final set of stationary points {σu}
of the given data is determined as follows. The subset Su of stationary points
is removed from the unreduced set of stationary points {sl}. The points in the
subset Su meet relation:

Su = {sk : ‖sk − s1‖ ≤ d} , (7)

where d =
√

(Δx)2 + (Δy)2 is the diagonal step in the regular grid, and the new
stationary point is determined as a centroid of points from subset Su:

σu =

∑
sk

|Su| , (8)

where |Su| is a number of points in the subset Su. The process is repeated until
the unreduced set of the stationary points is not empty.

The whole algorithm for determining the stationary points of the given
dataset is summarized in Algorithm 1.

3.2 Estimation of Shape Parameter for RBF Interpolation

The piecewise RBF interpolation is used during the process of the determining
the stationary points of the given dataset. Nevertheless, the quality of the result-
ing RBF interpolation strongly depends on the choice of the shape parameter α.
Therefore, in this section, the determination of suitable shape parameter α will
be performed.

For the above mentioned process, the surface with the least possible tension is
required, i.e. the surface must contain as little wavy as possible if the interpolated
points allow it. It means that the shape parameter α has to be sufficiently large.

Therefore, for these purposes, we proposed and experimentally verified that
shape parameter α is chosen so that the radius of circle of non-stationary inflec-
tion points of used RBF function φ(r) corresponds to the maximum distance of
the interpolated points, within one step of proposed piecewise approach, which
is r = 3d, where d =

√
(Δx)2 + (Δy)2 is the diagonal step in the regular grid.
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Algorithm 1. Determination of the stationary points {σu}NS

1 .

Input: given points {xi}N
1 and their associated scalar values {hi}N

1 , size of grid
Nx × Ny, grid spacing Δx and Δy, used RBF φ and its shape parameter α.

Output: stationary points {σu}NS
1

1: Row-major ordering the given points {xi}N
1 .

2: d =
√

(Δx)2 + (Δy)2.
3: Compute matrix A of linear system (4) for the set of points

{x1, . . . , x4, xNx+1, . . . , xNx+4, x2Nx+1, . . . , x2Nx+4, x3Nx+1, . . . , x3Nx+4}.
4: for i = 1, . . . , Ny − 3 do
5: for j = 1, . . . , Nx − 3 do
6: x̂ =

{
x(i−1)Nx+j , . . . , x(i−1)Nx+j+3, . . . , x(i+2)Nx+j , . . . , x(i+2)Nx+j+3

}

7: ĥ =
{
h(i−1)Nx+j , . . . , h(i−1)Nx+j+3, . . . , h(i+2)Nx+j , . . . , h(i+2)Nx+j+3

}

8: Compute the vector of unknown weights ĉ, eq. (4), where h = ĥ.
9: Compute the coefficients εmin and εmax, eq. (6).

10: Determine the stationary points {sq} from eq. (5) in the domain (6).
11: {sl} = {sl} ∪ {sq}
12: while the set {sk} is not empty do
13: Find Su = {sk : ‖sk − s1‖2 ≤ d} in the set {sl}.

14: Add the stationary point
∑

sk
|Su| to the final set of stationary points {σu}.

15: Delete all points sk ∈ Su from the set {sl}.

From this assumption, the following expression for shape parameter α was
derived:

α =
ω

3d
, (9)

where d =
√

(Δx)2 + (Δy)2 is the diagonal step in the regular grid and ω is a
constant parameter depending on the type of used RBF, see Table 1.

Table 1. Different RBFs, their derivation φ′(r) and their parameter ω, Eq. (9).

RBF φ(r) φ′(r) ω

Gaussian RBF e−(αr)2 −2α2re−(αr)2 1/
√

2

Inverse quadric
(
1 + (αr)2

)−1 −2α2r
(
1 + (αr)2

)−2
1/

√
3

Wendland’s φ3,1 (1 − αr)4+(4αr + 1) −20α2r(1 − αr)3+ 1/4

3.3 Searching of Bindings Between Stationary Points

It is possible that the given surface does not contain only isolated stationary
points, but the curves of stationary points, such as line segments, circles, parabo-
las or some other shapes, can lie on the given surface. Therefore, the method for
searching of bindings between stationary points will be described.
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At the beginning, the maximal possible distance δmax of two stationary points
for which these stationary points still lie on the same curve has to be established.
The situation of the worst case is illustrated in Fig. 3. In this figure, it can be

Fig. 3. The figure shows the worst case in which two stationary points (yellow squares)
still lie on the same curve of stationary points, i.e. the distance between two stationary
points is maximal possible distance. Moreover, the reduction of stationary points is
again shown.

seen four subdomains of the piecewise approach and for each of them, the one
stationary point is indicated using circle mark. Based on Eq. (7), the stationary
points of blue and red subdomains are reduced and are replaced by their centroid.
The same case occurs for the green and purple subdomain. New stationary points
which are obtained after the reduction are indicates by yellow squares in the
figure. It is also obvious that the distance of these two stationary points, which
is also the maximum possible distance δmax, is:

δmax = 4d,

where d =
√

(Δx)2 + (Δy)2 is the diagonal step in the regular grid.
Now, the stationary points {σu} of the given dataset are sequentially pro-

cessed by following. For the current stationary point σu, the all stationary points
{σw} which lying in the distance δmax are determined:

{σw} = {σw : ‖σw − σu‖ ≤ δmax} . (10)

If no stationary point is found, then the stationary point σu is isolated. Oth-
erwise, the binding fv = {σw} ∪ {σu} is obtained and newly added stationary
points are processed in the same way. Finally, the result of this approach is the
set of points described the curve of stationary points. This procedure is repeated
until the all stationary points {σu} are processed.

One of the possible solution of this problem is the kd−tree which can be
simply applied for purposes of searching of bindings between stationary points.
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4 Experimental Results

In this section, the experimental results for our proposed approach will be pre-
sented and their comparison with the exact stationary points which were deter-
mined analytically from the sampling function will be made. The implementation
was performed in Matlab. In addition, different radial basis functions have been
used, see Table 1.

For purposes of our experiments, a uniform distribution of points on a rect-
angular domain was used for the testing data. Thus, the given dataset contains
120×120 points uniformly distributed in the interval [xmin, xmax] × [ymin, ymax],
where the values xmin, xmax, ymin and ymax are chosen based on the used sam-
pling function, see (11a) – (11b) and (12a) – (12d). Moreover, each point from
this dataset is associated with a function value of the selected sampling function
at this point.

4.1 Comparison of Determined Stationary Points with Exact
Stationary Points

In this section, the results for datasets whose stationary points do not contain
mutual bindings, i.e. all stationary points are isolated, will be presented. The
sampling functions f1 (11a) and f2 (11b), which were defined in [12], fulfill these
properties.

f1(x) =
3

4
e− (9x1−2)2

4 − (9x2−2)2

4 +
3

4
e− (9x1+1)2

49 − (9x2+1)
10

+
1

2
e− (9x1−7)2

4 − (9x2−3)2

4 − 1

5
e−(9x1−4)2−(9x2−7)2

x ∈ [0, 1] × [0, 1] (11a)

f2(x) = sin (3 · x1) · cos (3 · x2) x ∈ [−2, 2] × [−2, 2] (11b)

Figure 4a presents the results for the dataset in which each point is associated
with a value from the f1 function (11a) when the Gaussian RBF has been used
for the piecewise RBF interpolation. Using our proposed approach, five isolated
stationary points which are marked by white circles were found for this dataset.
The exact stationary points of f1 function (11a) are shown using the red asterisks
(∗).

The results for the dataset in which each point is associated with a value from
the f2 function (11b), when the Gaussian RBF has been used for the piecewise
RBF interpolation, are presented in Fig. 4b. Twenty four isolated stationary
points which are represented by white circles were found for this dataset using
our proposed approach. The exact stationary points of f2 function (11b) are
again shown using the red asterisks (∗).

It can be seen that obtained results for both datasets correspond to the
stationary points calculated analytically from the sampling functions. Moreover,
it should be noted, that the same results were obtained even when other RBF
function, see Table 1, were used for the piecewise RBF interpolation.
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Fig. 4. The white circles indicate the stationary points of the given dataset that are
obtained using the proposed approach when the RBF interpolation used the Gaussian
RBF. The tested dataset contains 120 × 120 points. The red asterisks (∗) denote the
exact positions of the stationary points of the appropriate function. Furthermore, the
contour map of given dataset is shown.

4.2 Bindings Between Stationary Points

In this section, the results for datasets whose stationary points contains mutual
bindings will be presented. The four following sampling functions (12a) – (12d)
fulfill these properties.

f11(x) = − (x1 − x2)
2
, x ∈ [−1, 1] × [−1, 1] (12a)

f12(x) = sin
(
x1 + x2

2

)
, x ∈ [−3, 3] × [−2, 2] (12b)

f13(x) = sin

(
3π

(√
x2

1 + x2
2 + 0.25

))
, x ∈ [−1, 1] × [−1, 1] (12c)

f14(x) = −2 ·
(
x2

1 − x2
2

)2
+ 1, x ∈ [−1, 1] × [−1, 1] (12d)

At the beginning, it should be noted that the white solid line indicates the
curve of stationary points obtained for the given dataset using our proposed
approach and the isolated stationary point obtained using our proposed app-
roach is marked by the white circle. The red dashed line indicates the curve of
stationary points calculated analytically from the given sampling function and
the isolated stationary point calculated analytically from the given sampling
function is represented by the red asterisk (∗).

Figure 5a presents the results for the dataset in which each point is associated
with a value from the f11 function (12a) when the Gaussian RBF has been used
for the piecewise RBF interpolation. Using our proposed approach, one curve of
stationary points, specifically the line segment, were found for this dataset. This
result coincides with the result obtained using analytically approach.
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The results for the dataset in which each point is associated with a value from
the f12 function (12b), when the Gaussian RBF has been used for the piecewise
RBF interpolation, are presented in Fig. 5b. For this dataset, the four curves of
stationary points, specifically two parabolas and two segments of parabola, were
found using our proposed approach.

Figure 5c presents the results for the dataset in which each point is associated
with a value from the f13 function (12c) when the Gaussian RBF has been used

Fig. 5. The white solid lines indicate the curves of stationary points of the given
dataset that are obtained using the proposed approach when the RBF interpolation
used the Gaussian RBF. The tested dataset contains 120× 120 points. The red dashed
lines denote the exact curves of the stationary points of the appropriate function.
Furthermore, the contour map of given dataset is shown.
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for the piecewise RBF interpolation. Using our proposed approach, seven curves
of stationary points, specifically three circles and four arcs, and one isolated
stationary point were found for this dataset.

The results for the dataset in which each point is associated with a value from
the f14 function (12d), when the Gaussian RBF has been used for the piecewise
RBF interpolation, are presented in Fig. 5d. For this dataset, the two curves of
stationary points, specifically two line segments, were found using our proposed
approach.

For all mentioned experiments, it can be seen that the results obtained using
our proposed approach correspond to results obtained using analytically app-
roach. Moreover, it should be again noted that the same results were obtained
even when other RBF function, see Table 1, were used for the piecewise RBF
interpolation.

5 Conclusion

In this paper, a new approach for determination of stationary points of given
sampled surface without knowledge of the sampling function is presented. The
proposed method is based on the piecewise RBF interpolation of the given
dataset. Moreover, the proposed approach includes the method of detecting the
bindings between the found stationary points, i.e. the approach is able to asso-
ciate the points from the same curve of stationary points.

The experiments proved that the stationary points determined by our pro-
posed approach coincide with the exact stationary points which were determined
analytically form the sampling function.

The results of the proposed approach can, for example, be used for determina-
tion of the set of reference points for the RBF approximation which enable appro-
priate compression of given dataset. The knowledge of the bindings between
stationary points is possible to use for pruning the subset of related stationary
points to the required number of points on the appropriate curve of stationary
points.

In the future work, the proposed approach can be generalized for scattered
data using the k-nearest neighbors algorithm.
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Abstract. In many technical applications, reconstruction of the scat-
tered data is often task. For big scattered dataset in n-dimensional space,
the using some meshless method such as the radial basis function (RBF)
approximation is appropriate. RBF approximation is based on the dis-
tance computation, and therefore, it is dimensionally non-separable. This
approximation can be converted to an overdetermined linear system of
equations which has to be solved.

A new incremental approach for meshless RBF approximation which
respects the significant features of the given terrain data such as break
lines is proposed in this paper. Using this approach, the improving
approximation of the underlying data is achieved. Moreover, the pro-
posed approach leads to a significant compression of the given dataset
and the analytical description of the data is obtained. In comparison
with other existing methods, the proposed approach achieves the better
results due to respecting the features of the given data.

Keywords: RBF approximation · Stationary points · Extrema ·
Incremental algorithm · TPS · Point clouds

1 Introduction

The most frequent task for many engineering problems is the reconstruction of
the given data. There have been developed several algorithms for interpolation
or approximation of the given data. Nevertheless, they mostly expect some kind
of data ordering, e.g. rectangular mesh, structured mesh, unstructured mesh,
etc. This requirement is not necessary when the meshless techniques such as the
Radial Basis Function (RBF) methods originally introduced in [1,2] are used.
RBF techniques can be used in many fields of the technical or non-technical
problems, e.g. reconstruction of surfaces [3–5], visualization of data [6], solving
partial differential equations [7,8]. The RBF methods are based on the distance
computation between two points and they are independent of the dimension of
the space. When the RBF techniques are applied, the given data can be described
using analytical formula. The significant compression of the given data is also
achieved by using RBF approximation.

c© Springer Nature Switzerland AG 2019
K. Ntalianis et al. (Eds.): APSAC 2018, LNEE 574, pp. 222–228, 2019.
https://doi.org/10.1007/978-3-030-21507-1_32
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A significant role in terms of the quality of RBF approximation and the
compression ratio plays the appropriate placement of the reference points for
RBF approximation. In the case of geographic data, this requirement is met for
placement along significant features such as ridges, peaks, valleys, etc. A new
incremental approach for RBF approximation that puts the emphasis on good
placement of reference points and significantly improves the compression ratio
will be described in this paper.

In the following sections, the fundamental theoretical background needed for
description of the proposed approach will be mentioned. The proposed incre-
mental RBF approximation will be described in Sect. 3. In Sect. 4, the results of
our proposed algorithm will be presented. Finally, a final discussion of results
will be performed.

2 Theoretical Background

In this section, some theoretical aspects needed for description of the proposed
incremental approach will be introduced.

2.1 RBF Approximation

For scattered data processing, the RBF approximation can be used. This tech-
nique is based on computing the distance between two points and leads to a
solution of linear system of equations which can be solved by singular value
decomposition, QR decomposition etc. The RBF approximation is described in
[9] or [4] in detail.

2.2 Determination of Stationary Points

Stationary points of an explicit function f(x) are points where the gradient of the
function f(x) is zero vector, i.e. all partial derivatives are zero. In the case, when
an analytical explicit expression is not known for the given dataset, the piecewise
approach [10] based on RBF interpolation can be used for determination of
stationary points in the given dataset.

3 Proposed Approach

In this section, the proposed incremental approach for approximation geographic
data using radial basis functions is described.

The main influence on the quality of approximation and the compression
ratio has a good placement of the reference points. In case of geographic data,
placement along features such as break lines leads to better results. Therefore,
in the first level, the set of stationary points obtained for the filtered data using
algorithm in [10] is used as set of reference points. The filtered data are deter-
mined by applying a Gaussian low-pass filter to the given dataset. The main
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reason for filtration of data is a elimination of insignificant stationary points.
Moreover, the set of reference points is extended by corners of dataset bounding
box due to avoiding problems on the boundary. Now, the RBF approximation
(described in Sect. 2.1) is computed and residues r1 are determined. For this
purpose, the following equation is used:

rk = |h − fk(X)| k = 1, . . . , L, (1)

where {X,h} = {xi, hi}N
1 represents the given dataset, fk(x) is approximating

function in the kth level and L is number of levels.
In every following level k > 2, the residues rk−1 are filtered by applying the

Gaussian low-pass filter due to eliminating insignificant local maxima. Then, the
set of stationary points for filtered residues are determined using algorithm in
[10] and only local maxima are added to the set of reference points. Moreover,
the uniqueness of the added reference points is checked. When the new set of
reference points is obtained, the RBF approximation (described in Sect. 2.1) is
again computed and residues rk are calculated using Eq. (1). The whole pro-
cess is repeated until the required accuracy of approximation is achieved or the
maximum permissible compression ratio is exceeded.

Finally, it should be noted that the value of standard deviation σk of Gaussian
low-pass filter in kth level is set as:

σk =

{
σ k = 1, 2
σk−1

2
k = 3, . . . , L

(2)

where σ is initial value. The whole pseudocode is in Algorithm1.

Algorithm 1. The incremental RBF approximation of geographic data

Input: given dataset {X , h} = {xi, hi}N
1 , initial value of standard deviation

σ for Gaussian low-pass filter, stop conditions c1 and c2

Output: approximating function fk(x)
1 hf = Gauss(h, σ) // Gaussian low-pass filter

2 Ξ = Compute stationary points of {X , hf} (using algorithm in [10])
3 Ξ = Ξ ∪ (corners of dataset bounding box)
4 fk(x) = RBF approximation ({X , h}, Ξ)
5 rk = |h − fk(X)|
6 σk = σ
7 while c1||c2 do
8 rkf = Gauss(rk, σk) // Gaussian low-pass filter

9 Ξk = Compute stationary points of {X , rkf} (using algorithm in [10])
10 Ξ = Ξ ∪ (only local maxima from Ξk)
11 fk(x) = RBF approximation ({X , h}, Ξ)
12 rk = |h − fk(X)|
13 σk = σk/2
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4 Experimental Results

In this section, the experimental results for our proposed approach will be pre-
sented. The implementation was performed in Matlab. The thin plate spline
(TPS) function r2 log(r2) which is shape parameter free and divergent as radius
increases has been used for RBF approximation.

For the purposes of below mentioned experiments, two geographic point
clouds were used. The first dataset was obtained from GPS data of the mount
Vělký Rozsutec in the Malá Fatra, Slovakia (Fig. 1a) and contains 24,190 points.
The second dataset is GPS data of the part of Pennine Alps, Switzerland (Fig. 2a)
and contains 131,044 points.

(a) original data, N = 24, 190

(b) 1st level, M = 19 (c) 3rd level, M = 115 (d) 8th level, M = 595

Fig. 1. The mount Vělký Rozsutec, Slovakia and its contour map: original data and
different levels of proposed incremental RBF approximation when TPS is used.
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Results for different levels of RBF approximation of the mount Vělký Roz-
sutec are shown in Figs. 1b–d. We can see that the quality of approximation in
terms of error is improving with increasing level of the incremental RBF approx-
imation. For 8th level (see Fig. 1d), the many details of the original terrain are
already apparent.

In Fig. 2b–d, the results for different levels of incremental RBF approximation
of the part of Pennine Alps are shown. It can be again seen that the quality of
approximation is improving with increasing level of the incremental approach.
For the first level (see Fig. 2b), it is evident, that the small number of reference
points is defined for the ridge in the foreground, and therefore, this ridge is
approximated by several peaks in the first level. This problem is eliminated
with increasing level of the incremental RBF approximation. For 7th level (see
Fig. 2d), the many details of the original terrain are again apparent.

(a) original data, N = 131, 044

(b) 1st level, M = 51 (c) 3rd level, M = 413 (d) 7th level, M = 2602

Fig. 2. The part of Pennine Alps, Switzerland and its contour map: original data and
different levels of proposed incremental RBF approximation when TPS is used.
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(a) The mount Vel’ cetuszoRýk (b) The part of Pennine Alps

Fig. 3. The mean relative error of the proposed incremental RBF approximation in
comparison with classical RBF approximation [9] for different compression ratio.

The mean relative error in dependency on compression ratio is presented for
both geographic datasets in Fig. 3. Moreover, the comparison of the proposed
incremental approach with the classical RBF approximation [9] is performed.
From the results, it can be seen that the proposed approach achieves the better
quality of results in terms of error.

5 Conclusion

In this paper, a new incremental approach for RBF approximation for geographic
data is presented. Selection of the set of reference points for proposed incremental
approximation is based on the determination of stationary points of the input
point cloud in the first level and the finding local maxima of residues at each
hierarchical level. In addition, the Gaussian low-pass filter is used to smooth the
trend of the input points, resp. the residues before finding significant points.

The proposed approach achieves the improvement of results in compari-
son with other existing methods because the features of the given dataset are
respected.

In the future work, the proposed approach can be extended to higher dimen-
sions, as the extension should be straightforward. Also, the improving the com-
putational performance without loss of accuracy can be explored.
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