Course description

Course abbreviation:	KEI/PMK	. 11				Page:	1/3		
Course name: Academic Year:	Programming 2023/2024	Microcontroller	S		Printed:	30.05.2024	10:02		
Department/Unit /	KEI / PMK				Academic Year	2023/2024			
Title	Programming	Microcontroller	S		Type of completion	Exam			
Accredited/Credits	Yes, 4 Cred.				Type of completion	Combined			
Number of hours	Lecture 2 [Hours/Week] Tutorial 2 [Hours/Week]								
Occ/max	Status A	Status B	Status C		Course credit prior to	YES			
Summer semester	17/-	0 / -	0 / -		Counted into average	YES			
Winter semester	23 / -	0 / -	0 / -		Min. (B+C) students	10			
Timetable	Yes				Repeated registration	NO			
Language of instruction	Czech, Englis	h			Semester taught	Winter, Su	mmer		
Optional course	Yes				Internship duration	0			
Evaluation scale	1 2 3 4				Ev. sc. – cred.	d. S N			
No. of hours of on-premise									
Auto acc. of credit	Yes in the case of a previous evaluation 4 nebo nic.								
Periodicity	Κ								
Substituted course	None								
Preclusive courses	N/A								
Prerequisite courses	N/A								
Informally recomm	N/A								
Courses depending on this Course		KEI/SNAEI. K	EI/SNEI						

Course objectives:

Students understand and can handle hardware of sophisticated microprocessors and microcontrollers. They can program miscellaneous tasks, also in real-time. Students are able to evaluate and compare different versions of computers. They will get basic knowledge of and experience with computer processing of signals.

Requirements on student

Students have to prove their knowledge and abilities to solve practical tasks.

Content

Content of lectures:

- 1. Introduction- pipelines, their properties and utilization in processors
- 2. RISC processors structure and stages
- 3. RISC processors function, conflicts in the pipeline, branch prediction
- 4. CACHE memory integration in the computer, strategy of blocks swapping
- 5. ARM core its blocks and function
- 6. CORTEX core its blocks and function
- 7. Peripheral circuits of the 32-bit computers
- 8. Special architectures of computers superscalar, multiprocessor, multithreading
- 9. Real-time operating systems preemptive and cooperative, tasks and their sequencing
- 10. Internal communication in the computer system controller, buses, external peripherals
- 11. Diagnostics of the computer diagnostics of the data and program memory, processor, peripherals
- 12. Requirements on the computer in signals processing algorithms complexity and their structure

Contents of labs:

Most part of the laboratory experiments and especially the individual projects are devoted to programming. The individual projects are assigned in the beginning of the semester. Four weeks are reserved for intensive consultations.

Fields of study

Guarantors and lecturers

• Guarantors:	Doc. Dr. Ing. Vjačeslav Georgiev (100%)
• Lecturer:	Doc. Dr. Ing. Vjačeslav Georgiev (50%), Ing. Kamil Kosturik, Ph.D. (25%), Prof. Ing. Jiří Pinker, CSc.
	(100%), Ing. Petr Weissar, Ph.D. (25%)
 Tutorial lecturer: 	Ing. Kamil Kosturik, Ph.D. (50%), Ing. Petr Weissar, Ph.D. (50%)

Literature

• Basic:	Baer, J. Microprocessor Architecture. ISBN 978-0-521-76992-1.
• Basic:	Pinker, Jiří. <i>Mikroprocesory a mikropočítače</i> . Praha : BEN - technická literatura, 2004. ISBN 80-7300-110-1.
 Recommended: 	Doplňková literatura z adresáře v síti (dle potřeby).
• Recommended:	Firemní literatura ARM, Renesas, STM, Atmel, NXP, Freescale.
• Recommended:	Yoseph Yiu. The Definitive Guide to the ARM? Cortex-M3. 2010. ISBN 978-0-12-382090-7.

Time requirements

All forms of study

Activities		Time requirements for activity [h]			
Individual project (40)		20			
Preparation for an examination (30-60)		30			
Contact hours		52			
Preparation for laboratory testing; outcome analysis (1-8)		8			
	Total:	110			

assessment methods

Knowledge - knowledge achieved by taking this course are verified by the following means:

Combined exam

Skills demonstration during practicum

Project

Skills - skills achieved by taking this course are verified by the following means:

Combined exam

Skills demonstration during practicum

Project

Competences - competence achieved by taking this course are verified by the following means:

Project

teaching methods

Knowledge - the following training methods are used to achieve the required knowledge:

Lecture

Laboratory work

Skills - the following training methods are used to achieve the required skills:

Laboratory work

Individual study

Competences - the following training methods are used to achieve the required competences:

Individual study

learning outcomes

Knowledge - knowledge resulting from the course:

to describe function priciples of modern computer systems and design the best solution for the task requirements

Skills - skills resulting from the course:

formulate the solution using an appropriate algorithm

to analyze requirement on a computer in concrete tasks

design, implement and debug programs running on modern computer systems

Competences - competences resulting from the course:

N/A

Course is included in study programmes:

Study Programme	Type of	Form of	Branch	Stage S	t. plan v.	Year	Block	Status	R.year	R.
Applied Electrical Engineering	Postgraduat e Master	Combined	Applied Electrical Engineering	1	20	2023	Compulsory subjects	А	1	LS
Electronics and Information Technology	Postgraduat e Master	Full-time	Elektronics	1	20	2023	Compulsory courses	А	1	ZS
Electronics and Information Technology	Postgraduat e Master	Full-time	Information and Communication Technolo	l gy	20	2023	Compulsory courses	А	1	ZS
Electronics and Information Technology	Postgraduat e Master	Full-time	Power Electronics Technology	1	20	2023	Compulsory courses	А	1	ZS
Electronics and Information Technology	Postgraduat e Master	Full-time	Elektronics	1	20	2023	Compulsory courses	А	1	ZS
Electronics and Information Technology	Postgraduat e Master	Full-time	Information and Communication Technolo	l gy	20	2023	Compulsory courses	А	1	ZS
Electronics and Information Technology	Postgraduat e Master	Full-time	Power Electronics Technology	1	20	2023	Compulsory courses	Α	1	ZS