Lecturer(s)
|
-
Hruška Karel, Doc. Ing. Ph.D.
|
Course content
|
1 Repetition of matter composition, Maxwell's equations, vector operations. 2 Basics of crytechnology, cryogenic carriers, discovery of superconductivity. 3 Type I superconductors, Meissner effect. 4 Type II superconductors, properties, stabilization, AC field influence. 5 London equations, high-temperature superconductors, properties, losses. 6 Superconducting wires and usage of superconductivity for electric power transmission. 7 Superconducting magnets, construction, usage. 8 Acumulation of electric energy and superconductivity. 9 Superconductivity in electric machines. 10 Usage of superconductivity for nuclear fusion, fusion reactors. 11 MHD devices, load states of MHD devices. Superconductivity in measurement and informatics. 12 Magnetic levitation using superconductivity. 13 Experimental devices using superconductivity.
|
Learning activities and teaching methods
|
Laboratory work, Lecture
- Contact hours
- 39 hours per semester
- Graduate study programme term essay (40-50)
- 20 hours per semester
- Preparation for an examination (30-60)
- 20 hours per semester
|
prerequisite |
---|
Knowledge |
---|
to describe the composition of matters |
to describe the physical meaning of Maxwell's equations |
to describe Lenz's, Faraday's and Hopkinson's laws |
Skills |
---|
to apply basic mathematical operations and electrotechnical relations |
to analyze magnetic field problems |
to perform vector operations |
Competences |
---|
N/A |
learning outcomes |
---|
Knowledge |
---|
to explain the mechanizm of the effect of superconductivity |
to evaluate the advantages of superconductivity in certain application |
to write the London's equations |
Skills |
---|
to design a coil with superconductng winding |
to compare the properties using superconductivity and without it |
Competences |
---|
mgr. studium: independently solves technical problems |
teaching methods |
---|
Knowledge |
---|
Lecture |
Interactive lecture |
Lecture with visual aids |
Practicum |
Multimedia supported teaching |
Skills |
---|
Lecture |
Interactive lecture |
Lecture with visual aids |
Practicum |
Multimedia supported teaching |
Competences |
---|
Lecture |
Interactive lecture |
Lecture with visual aids |
Practicum |
Multimedia supported teaching |
assessment methods |
---|
Knowledge |
---|
Combined exam |
Individual presentation at a seminar |
Skills |
---|
Combined exam |
Individual presentation at a seminar |
Competences |
---|
Combined exam |
Individual presentation at a seminar |
Recommended literature
|
-
BUMBY, J., R. Superconducting rotating electrical machines. Clarendon Press Oxford, 1983.
-
de Gennes, P.G., Pincus, P.A. Superconductivity of metals and alloys. CRC Press, 2018. ISBN 978-042996558-6.
-
Lee, Peter J. Engineering superconductivity. New York : Wiley-Interscience, 2001. ISBN 0-471-41116-7.
-
Miryala, M., Koblischka, M.R. High-temperature superconductors: Occurrence, synthesis and applications. Nova Science Publishers, Inc., 2018. ISBN 978-153613342-4.
-
Odehnal, M. Supravodivost a jiné kvantové jevy. Praha : Academia, 1992. ISBN 80-200-0225-1.
-
Osamura, K., Matsushita, T., Lee, P.J.c, Ochiai, S. Composite superconductors. CRC Press, 2018. ISBN 978-135145917-4.
-
Poole, Charles P. Handbook of superconductivity. San Diego : Academic Press, 2000. ISBN 0-12-561460-8.
-
Schrieffer, J.R. Theory of super conductivity. CRC Press, 2018. ISBN 978-042996425-1.
-
Středa, P., Janů, Z. Supravodivost a fyzika nízkých teplot. Skripta ČVUT, 1987.
-
Takács, Silvester; Cesnak, Ladislav. Supravodivosť. 1. vyd. Bratislava : Alfa, 1979.
-
Waldram, J.R. Superconductivity of metals and cuprates. CRC Press, 2017. ISBN 978-135141285-8.
|