Course: Electrical Power Engineering 1

« Back
Course title Electrical Power Engineering 1
Course code KEE/EEN1
Organizational form of instruction Lecture + Tutorial
Level of course Bachelor
Year of study not specified
Semester Summer
Number of ECTS credits 5
Language of instruction Czech, English
Status of course Compulsory
Form of instruction Face-to-face
Work placements This is not an internship
Recommended optional programme components None
Course availability The course is available to visiting students
Lecturer(s)
  • Vinš Martin, Ing. et Ing.
  • Mašata David, Ing.
  • Olkhovskiy Mikhail, Ing.
  • Noháč Karel, Doc. Ing. Ph.D.
  • Schejbal Konstantin, Doc. Ing. CSc.
  • Bělík Milan, Ing. Ph.D.
  • Vykuka Roman, Ing.
  • Mužík Václav, Ing. Ph.D.
Course content
1. Basic power engineering terms. Network load diagram and its parameters. 2. Operation of power system in respect of zero point. Principle of grid compensation and Petersen coil. 3. Electric distribution systems, types according to topology and way of supply. Voltage levels used in Czech republic. 4. Electric parameters of overhead lines. Characteristic line impedance. Line resistance, calculation and affecting parameters. 5. Overhead line inductance: Principle of alternating three phase lines operation inductance derivation. 6. Overhead line capacity: Principle of alternating three phase lines operation capacity and earth capacity derivation. Operation capacity and dielectric loss of cables. Charging current and power of lines. 7. Line transposition, purpose and operation inductance influence. Bundled conductor lines and earth-wire, purpose and line parameters influence. Double line parameters. 8. Transmission line wave impedance. Ferranti phenomenon. Line natural transmitted power. Lines and networks in steady state. Used power parameters. Substitute elements "T" a "Pi", equations for line active parameters. 9. Voltage drop and power loss calculation for simple line, line with multiple loads, single side and double side supplied lines. Complex HV networks solution. 10. Clausius-Rankine cycle: Thermodynamic actions in water steam environment. P-V, T-s and i-s diagrams of C-R cycle. Steam power plant cycle thermal efficiency. Efficiency calculation based on steam i-s diagram. Combined steam-gas cycle. Possibilities of stream cycle efficiency improvement. Steam superheating and feed water regenerative heating. Steam parameters conversion. Thermodynamic and total efficiency of steam power plant. 11. Basic features of transformers used in power engineering. Equation of ideal transformer. Transformer parameters. No-load, on-load and short-circuit operation of transformer. Three phase transformer connections. Two transformers parallel operation. Triple windings transformers. Transformer voltage drop calculation. 12. Air pollution, major pollutants, emissions, immissions, emission factors. Basic principles of solid particles separation. Dry and wet mechanical separators, electric separators, filters. Separation of gaseous pollutants, theoretical principles. 13. Emissions from fossil fuel burning. Flue gas desulphurization and denitrification. Water pollution. Surface and groundwater - pollution types and occasions. Waste water - sewage treatment. Water management. Wastes and waste dispositions. Waste disposal methods, waste management. Packaging management. Legislative.

Learning activities and teaching methods
  • Preparation for an examination (30-60) - 45 hours per semester
  • Preparation for comprehensive test (10-40) - 25 hours per semester
  • Contact hours - 65 hours per semester
  • unspecified - 45 hours per semester
  • Contact hours - 20 hours per semester
prerequisite
Knowledge
explain principles and draw substitution circuit diagram of basic electrical machines (transformer and synchronous alternator)
explain the principles and purpose of basic switching electrical devices
specify the milestones of technological power engineering development
analyze the load diagram and its parameters
know basic physical principles of electrical energy obtaining and basic thermodynamic quantities, processes, laws and cycles
describe power boilers, pollutant separation principles and steam turbines
point out the technology and principles specifics of production in nuclear and hydropower plants
explain basic types of water turbines
specify alternative power generation technologies
Skills
apply the basics of university mathematics (complex analysis) and physics (thermodynamics)
apply a symbolic-complex method for solution in harmonic electrical circuits
build current and voltage phasor diagram
analyze arrangement of electro-magnetic fields for the basic geometrical situation
Competences
N/A
N/A
N/A
learning outcomes
Knowledge
explain operation of electric power system according to zero point configuration
compare power distribution systems according to topology and power supply
specify passive parameters of overhead lines and affecting parameters
justify the use of line transposition, bundle wires and earth wire
explain the term of line impedance and natural transmitted power of the line
explain the charging current and power, Ferranti phenomenon
specify the possibilities of improving the efficiency of steam power station cycle including steam superheating and supply water preheating
formulate the no load, on load and short circuit transformer operation
define the parallel operation of two transformers
specify adverse effects and types of short circuits
Skills
quantify the operational inductance and longitudinal resistance of AC three-phase lines
quantify operating capacity and phase to ground capacity of AC three-phase lines
create substitute "T" and "Pi" circuits and build references for line active parameters
calculate voltage drop for single lines, lines with multiple loads, single-side and double sided supplied lines
determine the thermal efficiency of the power plant steam cycle according to steam i-s diagram
estimate thermodynamic and overall efficiency of a steam power plant
calculate transformer voltage drop
explain short-circuit current time flow, equivalent short-circuit currents and method of short-circuit currents calculations
form basic technological scheme of thermal power plants
Competences
N/A
N/A
teaching methods
Knowledge
Lecture
Skills
Practicum
Competences
Lecture
Practicum
assessment methods
Knowledge
Combined exam
Skills
Skills demonstration during practicum
Test
Competences
Skills demonstration during practicum
Combined exam
Recommended literature
  • Gönen, Turan. Electric power distribution system engineering. 2nd ed. Boca Raton : CRC Press, 2008. ISBN 978-1-4200-6200-7.
  • Grainger, John J.; Stevenson, William D. Power system analysis. New York : McGraw-Hill, 1994. ISBN 0-07-113338-0.
  • Grigsby, Leonard L. Electric power generation, transmission, and distribution. 3rd ed. Boca Raton : CRC Press, 2012. ISBN 978-1-4398-5628-4.
  • Ibler, Zbyněk. Energetika v příkladech : technický průvodce energetika. 2. díl. 1. vyd. Praha : BEN - technická literatura, 2003. ISBN 80-7300-097-0.
  • Ibler, Zbyněk. Technický průvodce energetika. 1. díl. 1. vyd. Praha : BEN - technická literatura, 2002. ISBN 80-7300-026-1.
  • Máslo, Karel; Vrba, Miroslav; Švejnar, Pavel; Haňka, Ladislav; Veleba, Jan; Chladová, Miloslava; Sadecký, Bohumil; Mach, Veleslav; Brettschneider, Zdeněk; Hruška, Zdeněk. Řízení a stabilita elektrizační soustavy. Praha, 2013. ISBN 978-80-260-44671-.
  • Mastný, Petr; Drápela, Jiří; Mišák, Stanislav; Macháček, Jan; Ptáček, Michal; Radil, Lukáš; Bartošík, Tomáš; Pavelka, Tomáš. Obnovitelné zdroje elektrické energie. Praha, 2011. ISBN 978-80-01-04937-2.
  • Schejbal, Konstantin; Mertlová, Jiřina. Elektroenergetika II. 2. část. 1. vyd. Plzeň : ZČU, 1998. ISBN 80-7082-451-4(2.
  • Tlustý, Josef; Švec, Jan; Bannert, Petr; Brettschneider, Zbyněk; Kocur, Zbyněk; Mareček, Petr; Müller, Zdeněk; Sýkora, Tomáš. Návrh a rozvoj elektroenergetických sítí. Praha, 2011. ISBN 978-80-01-04939-6.
  • Toman, Petr; Drápela, Jiří; Mišák, Stanislav; Orságová, Jaroslava; Paar, Martin; Topolánek, David. Provoz distribučních soustav. Praha, 2011. ISBN 978-80-01-04935-8.


Study plans that include the course
Faculty Study plan (Version) Category of Branch/Specialization Recommended year of study Recommended semester