Lecturer(s)
|
-
Vinš Martin, Ing. et Ing.
-
Mašata David, Ing.
-
Olkhovskiy Mikhail, Ing.
-
Noháč Karel, Doc. Ing. Ph.D.
-
Schejbal Konstantin, Doc. Ing. CSc.
-
Bělík Milan, Ing. Ph.D.
-
Vykuka Roman, Ing.
-
Mužík Václav, Ing. Ph.D.
|
Course content
|
1. Basic power engineering terms. Network load diagram and its parameters. 2. Operation of power system in respect of zero point. Principle of grid compensation and Petersen coil. 3. Electric distribution systems, types according to topology and way of supply. Voltage levels used in Czech republic. 4. Electric parameters of overhead lines. Characteristic line impedance. Line resistance, calculation and affecting parameters. 5. Overhead line inductance: Principle of alternating three phase lines operation inductance derivation. 6. Overhead line capacity: Principle of alternating three phase lines operation capacity and earth capacity derivation. Operation capacity and dielectric loss of cables. Charging current and power of lines. 7. Line transposition, purpose and operation inductance influence. Bundled conductor lines and earth-wire, purpose and line parameters influence. Double line parameters. 8. Transmission line wave impedance. Ferranti phenomenon. Line natural transmitted power. Lines and networks in steady state. Used power parameters. Substitute elements "T" a "Pi", equations for line active parameters. 9. Voltage drop and power loss calculation for simple line, line with multiple loads, single side and double side supplied lines. Complex HV networks solution. 10. Clausius-Rankine cycle: Thermodynamic actions in water steam environment. P-V, T-s and i-s diagrams of C-R cycle. Steam power plant cycle thermal efficiency. Efficiency calculation based on steam i-s diagram. Combined steam-gas cycle. Possibilities of stream cycle efficiency improvement. Steam superheating and feed water regenerative heating. Steam parameters conversion. Thermodynamic and total efficiency of steam power plant. 11. Basic features of transformers used in power engineering. Equation of ideal transformer. Transformer parameters. No-load, on-load and short-circuit operation of transformer. Three phase transformer connections. Two transformers parallel operation. Triple windings transformers. Transformer voltage drop calculation. 12. Air pollution, major pollutants, emissions, immissions, emission factors. Basic principles of solid particles separation. Dry and wet mechanical separators, electric separators, filters. Separation of gaseous pollutants, theoretical principles. 13. Emissions from fossil fuel burning. Flue gas desulphurization and denitrification. Water pollution. Surface and groundwater - pollution types and occasions. Waste water - sewage treatment. Water management. Wastes and waste dispositions. Waste disposal methods, waste management. Packaging management. Legislative.
|
Learning activities and teaching methods
|
- Preparation for an examination (30-60)
- 45 hours per semester
- Preparation for comprehensive test (10-40)
- 25 hours per semester
- Contact hours
- 65 hours per semester
- unspecified
- 45 hours per semester
- Contact hours
- 20 hours per semester
|
prerequisite |
---|
Knowledge |
---|
explain principles and draw substitution circuit diagram of basic electrical machines (transformer and synchronous alternator) |
explain the principles and purpose of basic switching electrical devices |
specify the milestones of technological power engineering development |
analyze the load diagram and its parameters |
know basic physical principles of electrical energy obtaining and basic thermodynamic quantities, processes, laws and cycles |
describe power boilers, pollutant separation principles and steam turbines |
point out the technology and principles specifics of production in nuclear and hydropower plants |
explain basic types of water turbines |
specify alternative power generation technologies |
Skills |
---|
apply the basics of university mathematics (complex analysis) and physics (thermodynamics) |
apply a symbolic-complex method for solution in harmonic electrical circuits |
build current and voltage phasor diagram |
analyze arrangement of electro-magnetic fields for the basic geometrical situation |
Competences |
---|
N/A |
N/A |
N/A |
learning outcomes |
---|
Knowledge |
---|
explain operation of electric power system according to zero point configuration |
compare power distribution systems according to topology and power supply |
specify passive parameters of overhead lines and affecting parameters |
justify the use of line transposition, bundle wires and earth wire |
explain the term of line impedance and natural transmitted power of the line |
explain the charging current and power, Ferranti phenomenon |
specify the possibilities of improving the efficiency of steam power station cycle including steam superheating and supply water preheating |
formulate the no load, on load and short circuit transformer operation |
define the parallel operation of two transformers |
specify adverse effects and types of short circuits |
Skills |
---|
quantify the operational inductance and longitudinal resistance of AC three-phase lines |
quantify operating capacity and phase to ground capacity of AC three-phase lines |
create substitute "T" and "Pi" circuits and build references for line active parameters |
calculate voltage drop for single lines, lines with multiple loads, single-side and double sided supplied lines |
determine the thermal efficiency of the power plant steam cycle according to steam i-s diagram |
estimate thermodynamic and overall efficiency of a steam power plant |
calculate transformer voltage drop |
explain short-circuit current time flow, equivalent short-circuit currents and method of short-circuit currents calculations |
form basic technological scheme of thermal power plants |
Competences |
---|
N/A |
N/A |
teaching methods |
---|
Knowledge |
---|
Lecture |
Skills |
---|
Practicum |
Competences |
---|
Lecture |
Practicum |
assessment methods |
---|
Knowledge |
---|
Combined exam |
Skills |
---|
Skills demonstration during practicum |
Test |
Competences |
---|
Skills demonstration during practicum |
Combined exam |
Recommended literature
|
-
Gönen, Turan. Electric power distribution system engineering. 2nd ed. Boca Raton : CRC Press, 2008. ISBN 978-1-4200-6200-7.
-
Grainger, John J.; Stevenson, William D. Power system analysis. New York : McGraw-Hill, 1994. ISBN 0-07-113338-0.
-
Grigsby, Leonard L. Electric power generation, transmission, and distribution. 3rd ed. Boca Raton : CRC Press, 2012. ISBN 978-1-4398-5628-4.
-
Ibler, Zbyněk. Energetika v příkladech : technický průvodce energetika. 2. díl. 1. vyd. Praha : BEN - technická literatura, 2003. ISBN 80-7300-097-0.
-
Ibler, Zbyněk. Technický průvodce energetika. 1. díl. 1. vyd. Praha : BEN - technická literatura, 2002. ISBN 80-7300-026-1.
-
Máslo, Karel; Vrba, Miroslav; Švejnar, Pavel; Haňka, Ladislav; Veleba, Jan; Chladová, Miloslava; Sadecký, Bohumil; Mach, Veleslav; Brettschneider, Zdeněk; Hruška, Zdeněk. Řízení a stabilita elektrizační soustavy. Praha, 2013. ISBN 978-80-260-44671-.
-
Mastný, Petr; Drápela, Jiří; Mišák, Stanislav; Macháček, Jan; Ptáček, Michal; Radil, Lukáš; Bartošík, Tomáš; Pavelka, Tomáš. Obnovitelné zdroje elektrické energie. Praha, 2011. ISBN 978-80-01-04937-2.
-
Schejbal, Konstantin; Mertlová, Jiřina. Elektroenergetika II. 2. část. 1. vyd. Plzeň : ZČU, 1998. ISBN 80-7082-451-4(2.
-
Tlustý, Josef; Švec, Jan; Bannert, Petr; Brettschneider, Zbyněk; Kocur, Zbyněk; Mareček, Petr; Müller, Zdeněk; Sýkora, Tomáš. Návrh a rozvoj elektroenergetických sítí. Praha, 2011. ISBN 978-80-01-04939-6.
-
Toman, Petr; Drápela, Jiří; Mišák, Stanislav; Orságová, Jaroslava; Paar, Martin; Topolánek, David. Provoz distribučních soustav. Praha, 2011. ISBN 978-80-01-04935-8.
|