Course: Theory of Electrical Power Transmission and Distribution

« Back
Course title Theory of Electrical Power Transmission and Distribution
Course code KEE/TPDE
Organizational form of instruction Lecture + Tutorial
Level of course Master
Year of study not specified
Semester Winter
Number of ECTS credits 5
Language of instruction Czech, English
Status of course Compulsory
Form of instruction Face-to-face
Work placements This is not an internship
Recommended optional programme components None
Lecturer(s)
  • Hejtmánková Pavla, Doc. Ing. Ph.D.
  • Olkhovskiy Mikhail, Ing.
Course content
1. Introduction to the subject, characteristics of the electrical power system (ES) of the Czech Republic, voltage levels, types of transmission and distribution networks and the way of their operation - network solutions in terms of construction and mode of operation (wiring arrangement), network solution from the point of view of the transformer node to ground operational and economic importance. 2. Defining the electrical network (active, passive parameters) - nodes, branches. Calculation of passive parameters of overhead lines. 3. Transformers (two-wire, three-wire), label values, short-circuit and no-load state, replacement scheme, passive parameter calculation. Capacitors, Chokes. 4. Creation of substitute schematic of part of ES, assumptions of solution, conversion to one voltage level, conversion between proportional quantities and quantities in named (real) units, calculation of longitudinal impedances (reactances) of individual elements of the network. 5. Voltage, current and power conditions on the line, the possibility of neglecting some passive parameters, using two-port alternatives, phasor diagrams. Determination of power flows in a branch. Losses in the branch. 6. Voltage drop across lines (DC, DC - 1F and 3F, powered from one or both sides, with one or more sampling), definition, phasor diagram, calculation. 7. Solution of voltage, current and power ratios in electric networks - method of gradual simplification. 8. Solution of voltage, current and power ratios in n-node electric networks - method of nodal voltages, creation and comparison of properties of admittance and impedance matrices, derivation of equations of system operation. 9. Calculation of system operation using iterative methods (Gauss-Seidel, Newton-Raphson), comparison, flowcharts, solution procedure, convergence. 10. EC losses. Calculate network losses based on node sampling. 11. Failure states in electric networks (origin, division), symmetrical faults - three-phase short circuit. Course, effects and calculation of short-circuit currents. Dimensioning of equipment for the effects of (thermal, dynamic) short-circuit currents. 12. Unbalanced fault states, decomposition of asymmetric system to symmetrical components, disturbances. 13. Unbalanced fault conditions, longitudinal disturbances. Utilization of the method of joining simplified component replacement schemes for modeling various transverse and longitudinal faults.

Learning activities and teaching methods
One-to-One tutorial, Individual study, Lecture, Practicum
  • Practical training (number of hours) - 26 hours per semester
  • Contact hours - 39 hours per semester
  • Preparation for formative assessments (2-20) - 12 hours per semester
  • Preparation for comprehensive test (10-40) - 20 hours per semester
  • Preparation for an examination (30-60) - 40 hours per semester
prerequisite
Knowledge
to describe electric power concepts and laws
to justify the concept of the Electric Power System of the Czech Republic
to identify individual components of ES (overhead and cable lines, transformer), their function and design
Skills
to apply secondary school and university mathematics to the solved problematics (e.g. to use symbolic-complex method)
Competences
N/A
N/A
N/A
learning outcomes
Knowledge
to characterize the electric power system (ES) of the Czech Republic in terms of both the design and operational solution of electrical networks (according to ordered wiring) at different voltage levels
to characterize the transmission and distribution networks of the Czech Republic from the point of view of the transformer node interconnection with the ground, to explain the operational and economic importance
define passive parameters of individual elements of ES (line, transformer, choke, capacitor)
explain the procedure of creating a substitute schematic of ES parts of different complexity
to explain methods for solving of voltage, current and power relationship on a line, i.e. be able to determine its active parameters
to formulate mathematically the steady running of ES in symmetrical and asymmetric state and indicate the progress of its usable solutions in specific calculations
to define, characterize and describe different types of faults occurring in ES
Skills
calculate the passive parameters of the specific overhead line or transformer
to solve voltage and current conditions on lines for different voltage levels
create an substitute scheme of any specified part of ES and use it in calculations of voltage, current and power output relationship in networks of different voltage levels in solving operational and fault conditions
to solve the ES Load Flow in a steady state using the nodal voltage method and numerically using iterative methods (Newton-Raphson and Gauss-Seidl)
to determine short-circuit relationships in different ES locations, to calculate short-circuit currents for the specific type of failure, to carry out the asymmetric decomposition (for U or I) into symmetrical components
Competences
N/A
N/A
teaching methods
Knowledge
Lecture
Practicum
One-to-One tutorial
Skills
Lecture with visual aids
Lecture supplemented with a discussion
Practicum
Task-based study method
Skills demonstration
Individual study
One-to-One tutorial
Discussion
Interactive lecture
Competences
Lecture
Practicum
assessment methods
Knowledge
Combined exam
Seminar work
Test
Skills
Combined exam
Skills demonstration during practicum
Seminar work
Test
Competences
Combined exam
Recommended literature
  • Beran, Hájek, Mertlová. Přenos a rozvod el. energie. skripta VŠSE.
  • Beran, M., Hájek, J., Mertlová, J. Přenos a rozvod el. en. - Příklady. VŠSE, 1982.
  • Grigsby, Leonard L. Electric power generation, transmission, and distribution. 3rd ed. Boca Raton : CRC Press, 2012. ISBN 978-1-4398-5628-4.
  • Grigsby, Leonard L. Power systems. 3rd ed. Boca Raton : CRC Press, 2012. ISBN 978-1-4398-5633-8.
  • Hodinka, Fecko, Němeček. Přenos a rozvod el. energie. SNTL, 1989.
  • Kolcun, Michal; Haller, Rainer; Mühlbacher, Jan. Mathematical analysis of electrical networks. 1. vyd. Praha : BEN - technická literatura, 2004. ISBN 80-7300-098-9.
  • Máslo, Karel a kolektiv. Řízení a stabilita elektrizační soustavy. Praha : AEM, 2013. ISBN 97880260446711.
  • Mertlová, Jiřina; Hejtmánková, Pavla; Kocmich, Martin. Přenos a rozvod elektrické energie. 1. vyd, dotisk. Plzeň : ZČU, 1997. ISBN 80-7082-222-8.
  • Mertlová, Jiřina; Hejtmánková, Pavla; Tajtl, Tomáš. Teorie přenosu a rozvodu elektrické energie. 1. vyd. Plzeň : Západočeská univerzita, 2004. ISBN 80-7043-307-8.
  • Natarajan, Ramasamy. Power system capacitors. Boca Raton : Taylor & Francis, 2005. ISBN 1-57444-710-6.
  • Pansini, Anthony J. Power transmission and distribution. 2nd ed. Lilburn : Fairmont Press, 2005. ISBN 0-8493-5034-4.
  • Štroblová, M. Elektroenergetika - Podklady pro cvičení. ZČU, 1998.
  • Tlustý Josef. Monitorování, řízení a chránění elektrizačních soustav. Praha, 2011. ISBN 978-80-01-04940-2.
  • Tlustý, Josef; Švec, Jan; Bannert, Petr; Brettschneider, Zbyněk; Kocur, Zbyněk; Mareček, Petr; Müller, Zdeněk; Sýkora, Tomáš. Návrh a rozvoj elektroenergetických sítí. Praha, 2011. ISBN 978-80-01-04939-6.
  • Toman, Petr; Drápela, Jiří; Mišák, Stanislav; Orságová, Jaroslava; Paar, Martin; Topolánek, David. Provoz distribučních soustav. Praha, 2011. ISBN 978-80-01-04935-8.
  • Weedy, Birron Mathew; Cory, B. J. Electric power systems. 4th ed. Chichester : John Wiley & Sons, 1998. ISBN 0-471-97677-6.


Study plans that include the course
Faculty Study plan (Version) Category of Branch/Specialization Recommended year of study Recommended semester