Lecturer(s)
|
-
Benešová Zdeňka, Prof. Ing. CSc.
-
Doležel Ivo, Prof. Ing. CSc.
-
Sodomka Ondřej, Ing.
-
Pánek David, Doc. Ing. Ph.D.
-
Karban Pavel, Prof. Ing. Ph.D.
-
Petrášová Iveta, Ing.
-
Ledvinová Marcela, Ing. Ph.D.
-
Kaska Jan, Ing.
-
Hamar Roman, Ing. Ph.D.
|
Course content
|
1. Non-stationary Maxwell equations in integral and differential form. Electrodynamic potentials. 2. Maxwell equations for the time harmoniously variable electromagnetic field. Energy balance of the electromagnetic field. Poynting vector. 3. Special methods for solving fields. Integral expressions for potentials. Mirroring method. Calculation of operating parameters (resistance, capacity, inductance) for typical configurations. 4. Boundary problems and their solution. Stationary form of partial differential equations for potential. 5. Analytical solution of simple boundary problems in planar, axial and spherical symmetry. 6. Numerical solution of boundary problems. Finite Difference Method. 7. Advanced methods for solving boundary problems. 8. Homogeneous transmission line. Basic equation for space-time distribution of voltage and current. 9. Homogeneous transmission line in steady harmonic state. 10. Electromagnetic waves. 11. Spreading of planar, cylindrical and spherical waves through open space. Wave impact on the interface. 12. Basic types of antennas. Near and far field. Radiation characteristics. 13. Basic types of waveguides, characteristic oscillations.
|
Learning activities and teaching methods
|
- Contact hours
- 52 hours per semester
- Preparation for an examination (30-60)
- 30 hours per semester
- Preparation for formative assessments (2-20)
- 5 hours per semester
- Preparation for laboratory testing; outcome analysis (1-8)
- 5 hours per semester
- Undergraduate study programme term essay (20-40)
- 20 hours per semester
- unspecified
- 36 hours per semester
- Contact hours
- 16 hours per semester
|
prerequisite |
---|
Knowledge |
---|
control the basic laws and principles of the stationary electromagnetic field |
control the basis of vector analysis, calculus, differential equations |
Skills |
---|
to control commonly available information and communication technique |
Competences |
---|
N/A |
N/A |
N/A |
learning outcomes |
---|
Knowledge |
---|
characterize the physical nature of electromagnetic phenomena |
to explain basic methods for the analysis of electromagnetic phenomena |
summarize the underlying phenomena of the non-stationary electromagnetic field |
describe wave processes on the line and in the free space |
Skills |
---|
to work with a computer program for the analysis of electromagnetic phenomena |
Competences |
---|
N/A |
teaching methods |
---|
Knowledge |
---|
Lecture |
Practicum |
Skills |
---|
Lecture |
Practicum |
Task-based study method |
Competences |
---|
Lecture |
Practicum |
assessment methods |
---|
Knowledge |
---|
Combined exam |
Test |
Seminar work |
Skills |
---|
Combined exam |
Seminar work |
Individual presentation at a seminar |
Competences |
---|
Skills demonstration during practicum |
Recommended literature
|
-
Benešová, Zdeňka; Mayer, Daniel. Základní příklady z teorie elektromagnetického pole. 1. vyd. Plzeň : Západočeská univerzita, 2001. ISBN 80-7082-818-8.
-
David J. Griffiths. Introduction to Electrodynamics. 2017. ISBN 978-1108420419.
-
Edward M. Purcell. Electricity and Magnetism. 2013. ISBN 978-1107014022.
-
Halliday, David; Resnick, Robert,; Walker, Jearl,; Dub, Petr. Fyzika. 2., přeprac. vyd. Brno : VUTIUM, 2013. ISBN 978-80-214-4123-1.
-
John David Jackson. Classical Electrodynamics. 2009. ISBN 978-8126510948.
-
Mayer, Daniel. Aplikovaný elektromagnetizmus : úvod do makroskopické teorie elektromagnetického pole pro elektrotechnické inženýry. 1. vyd. České Budějovice : Kopp, 2012. ISBN 978-80-7232-424-8.
-
Sedlák, Bedřich; Štoll, Ivan. Elektřina a magnetismus. První elektronické vydání (Čtvrté vydání, v Nakladatelství Karolinum třetí). 2017. ISBN 978-80-246-3146-2.
|