Course: Numerical Modeling and Simulations

« Back
Course title Numerical Modeling and Simulations
Course code KEP/MAS
Organizational form of instruction Lecture + Tutorial
Level of course Bachelor
Year of study not specified
Semester Summer
Number of ECTS credits 3
Language of instruction Czech, English
Status of course Compulsory-optional
Form of instruction Face-to-face
Work placements This is not an internship
Recommended optional programme components None
Lecturer(s)
  • Karban Pavel, Prof. Ing. Ph.D.
  • Kotlan Václav, Doc. Ing. Ph.D.
  • Hamar Roman, Ing. Ph.D.
  • Kuthan Jiří, Ing.
  • Kaska Jan, Ing.
Course content
1. Fundamentals of mathematical modeling and simulation. Methods for solving partial differential equations. Formulation of a mathematical model for individual physical fields. 2. Basic variables of electromagnetic field theory. Electrostatic and electric current fields, edge problems for electrical potential, boundary conditions. 3. The magnetic field, boundary problems for magnetic vector potential, boundary conditions. 4. Electromagnetic induction, non-stationary electromagnetic field. Simulation of coupled electromagnetic field and temperature field. 5. Association of the thermoelastic deformation field. 6. Use of modeling in the development phase of the application. Analysis of results. 7. Fundamentals of optimization techniques and their use.

Learning activities and teaching methods
  • Presentation preparation (report) (1-10) - 10 hours per semester
  • Contact hours - 39 hours per semester
  • Individual project (40) - 20 hours per semester
  • Contact hours - 12 hours per semester
  • Preparation for comprehensive test (10-40) - 15 hours per semester
  • unspecified - 27 hours per semester
prerequisite
Knowledge
to master the basic methods of electromagnetic field analysis and computer solution of physical fields
to explain the basics of electromagnetic, electrostatic and current field theory
Skills
to orientate oneself in the simulation software
Competences
N/A
N/A
N/A
learning outcomes
Knowledge
to analyze the problem, to create the mathematical model and interpret the results for the selection of the appropriate variant
Skills
to control the numerical modeling software
to formulate the physical and mathematical models of basic tasks in electrotechnics (electromagnetic field, electrostatic field, electric heat due to the electromagnetic field, thermoelastic deformation)
to apply mathematical modeling to solve real-world examples
Competences
N/A
N/A
N/A
teaching methods
Knowledge
Lecture
Practicum
Task-based study method
Individual study
Skills
Practicum
Self-study of literature
One-to-One tutorial
Competences
Lecture
Practicum
assessment methods
Knowledge
Project
Test
Skills
Skills demonstration during practicum
Competences
Group presentation at a seminar
Recommended literature
  • Benešová, Zdeňka; Mayer, Daniel. Základní příklady z teorie elektromagnetického pole. Plzeň : Západočeská univerzita, 2008. ISBN 978-80-7043-737-7.
  • Gerald, Curtis F.; Wheatley, Patrick O. Applied numerical analysis. 7th ed. Boston : Pearson Education, 2004. ISBN 0-321-13304-8.
  • Karban, Pavel. Výpočty a simulace v programech Matlab a Simulink. Brno : Computer Press, 2006. ISBN 80-251-1448-3.
  • Mayer, Daniel. Aplikovaný elektromagnetizmus : úvod do makroskopické teorie elektromagnetického pole pro elektrotechnické inženýry. 1. vyd. České Budějovice : Kopp, 2012. ISBN 978-80-7232-424-8.


Study plans that include the course
Faculty Study plan (Version) Category of Branch/Specialization Recommended year of study Recommended semester