Course: Electrical Machines

« Back
Course title Electrical Machines
Course code KEV/ES
Organizational form of instruction Lecture + Tutorial
Level of course Bachelor
Year of study not specified
Semester Winter and summer
Number of ECTS credits 5
Language of instruction Czech, English
Status of course Compulsory
Form of instruction Face-to-face
Work placements This is not an internship
Recommended optional programme components None
Lecturer(s)
  • Skalický Martin, Ing.
  • Dražan Jiří, Ing.
  • Hruška Karel, Doc. Ing. Ph.D.
  • Hána Bohumír, Ing.
  • Vachtlová Michaela, Ing.
  • Kindl Vladimír, Doc. Ing. Ph.D.
  • Zeman Martin, Ing.
  • Pechánek Roman, Doc. Ing. Ph.D.
  • Skala Bohumil, Doc. Ing. Ph.D.
  • Šobra Jan, Ing. Ph.D.
  • Bouzek Lukáš, Ing.
  • Nekolný Lukáš, Ing.
  • Zíka Jiří, Ing.
  • Světlík Pavel, Ing.
  • Vlasák Martin, Ing.
  • Veg Lukáš, Ing. Ph.D.
  • Laksar Jan, Ing. Ph.D.
  • Frank Zdeněk, Ing.
  • Čermák Radek, Ing.
Course content
Lectures: 1. The total current law, self and mutual inductance, transformer principle, induces voltage 2. The phase diagram, per unit values, the winding connection, Hopkins's law 3. The Lorentz's law, the internal and external magnitudes, rotary field 4. The speed of the rotary field, rotary field of the 2ph and 3pfh system, the winding coefficient 5. Asynchronous machine, the principle of operation, run-up, slip, equivalent circuit 6. Mechanical power on the shaft of the machine, torque characteristic, run-up by the direct network connection, Y-D switching 7. SOFT START run-up, machine with the winding rotor, squirrel cage machine 8. Number of pole pair changing, speed control by the voltage and frequency of the supply source, braking, 1phase machine 9. Synchronous machine, principle of operation, motor and its run-up, phase diagram, self operated synchronous generator 10. The generator connected to the network, conditions, power control on the network, torque characteristic of the machine with the cylindrical rotor and salient poles 11. DC machines, principle of operation, description, induced voltage and torque, equivalent circuit, the characteristic in according to the excitation winding connection 12. Machines with permanent magnets, advantage and disadvantage, stepping machines 13. Ultrasonic machines, circle diagram of asynchronous machine Laboratory classes: 1. Introduction, measurement instruments 2. Theory - transformer. Design, no load test, short circuit test, the 50 vs 60 Hz network, basic calculation 3. Measurement no.1 - 3ph transformer. Resistivity measurement, no-load test, voltage ratio 4. Theory - transformer. Parallel operation, per unit value, basic calculation 5. Measurement no.2 - Reactive power compensation 6. Theory - asynchronous machine. Basic design, rotor description, terminal box, name-plate parameters, induced voltage, basic calculation 7. Measurement no.3 - Asynchronous machine I. Slip measurement 8. Theory - asynchronous machine. Torque relation, energy balance, currents and voltage in various winding connection, circle diagram, self-operated asynchronous generator 9. Measurement no.4 - Asynchronous machine II. No load test resistivity measurement 10. Theory - synchronous machine. Self-operated generator and generator on the network 11. Measurement no.5 - Asynchronous machine III. Y-D comparison 12. Theory - DC machine, commutation. Permanent magnets 13. Conclusion, check reports

Learning activities and teaching methods
Lecture with practical applications, Multimedia supported teaching
  • Presentation preparation (report) (1-10) - 4 hours per semester
  • Preparation for an examination (30-60) - 54 hours per semester
  • Contact hours - 26 hours per semester
  • Practical training (number of hours) - 26 hours per semester
  • Preparation for laboratory testing; outcome analysis (1-8) - 20 hours per semester
prerequisite
Knowledge
popsat principy měření elektrického odporu, napětí a proudu
popsat Lenzův, Faradayův a Kirchhoffovy zákony
ovládat značení elektrotechnických veličin a jejich fyzikální jednotky
Skills
navrhnout zapojení přístrojů pro měření výkonů v 3f sítích
analyzovat interakci magnetických polí a elektrického proudu ve vodiči
aplikovat základní matematické operace a elektrotechnické vztahy
Competences
N/A
learning outcomes
Knowledge
explain the principles of operation of transformers and electrical machines
ovládat vztahy potřebné pro vyřešení výpočtu
Skills
apply the knowledge of the measurement in DC current circuits and perform the analysis of the electrical drive, summarize the requirements posed on it
sketch out the scheme of a given existing connection of an electrical machine and perform the analysis of the electrical drive, summarizing the requirements placed upon it
put the given connection into operation under the laboratory conditions
Competences
N/A
teaching methods
Knowledge
Multimedia supported teaching
Interactive lecture
Skills
Practicum
Laboratory work
Competences
Interactive lecture
Practicum
assessment methods
Knowledge
Test
Combined exam
Skills
Skills demonstration during practicum
Individual presentation at a seminar
Combined exam
Competences
Combined exam
Individual presentation at a seminar
Recommended literature
  • Bartoš, Václav. Elektrické stroje. Plzeň : Západočeská univerzita, 2000. ISBN 80-7082-221-X.
  • Bartoš, Václav. Elektrické stroje. 1. vyd. V Plzni : Západočeská univerzita, 2006. ISBN 80-7043-444-9.
  • Bašta, Jan; Chládek, Jaroslav; Mayer, Imrich. Teorie elektrických strojů. 1. vyd. Praha : SNTL, 1968.
  • Del Toro, Vincent. Basic electric machines. Upper Saddle River: Prentice Hall, 1990. ISBN 0-13-060146-2.
  • Hrabovcová, Valéria. Moderné elektrické stroje. 1. vyd. Žilina : Žilinská univerzita, 2001. ISBN 80-7100-809-5.
  • Petrov, Georgij N. Elektrické stroje 1 : úvod-transformátory. Vyd. 1. Praha : Academia, 1980.
  • Sarma, Mulukutla S. Electric machines : Steady-State Theory and Dynamic Performance. 2nd ed. St.Paul : West Publishing Comp., 1994.
  • ŠTĚPINA, J. Fyzikální úvod do teorie elektrických strojů. ZČU v Plzni, 1995.


Study plans that include the course
Faculty Study plan (Version) Category of Branch/Specialization Recommended year of study Recommended semester
Faculty: Faculty of Electrical Engineering Study plan (Version): Commercial Electrical Engineering (16) Category: Electrical engineering, telecommunication and IT 2 Recommended year of study:2, Recommended semester: Summer