Course: Theory of Electric Machines 2

« Back
Course title Theory of Electric Machines 2
Course code KEV/TS2
Organizational form of instruction Lecture + Tutorial
Level of course Master
Year of study not specified
Semester Winter
Number of ECTS credits 5
Language of instruction Czech, English
Status of course Compulsory
Form of instruction Face-to-face
Work placements This is not an internship
Recommended optional programme components None
Lecturer(s)
  • Hruška Karel, Doc. Ing. Ph.D.
  • Laksar Jan, Ing. Ph.D.
Course content
1 Winding leakage inductance, calculation of transformer short-circuit voltage. 2 Transformer short-circuit state, transfomer division plane. 3 Winding factors and their impact on higher order harmonic components. 4 Time and space harmonic components induction machine, asynchronous and synchronous parasitic moments. 5 Induction machine circle diagram as circular inversion of impedance line. 6 Synchronous machines excitation field. 7 Design of excitation for electrically excited synchronous machines, Potier reactance. 8 Design of excitation of permanent magnet synchronous machines, permanent magnets leakage. 9 Permanent magnet losses and their determination. 10 Synchronous machine circle diagram considering armature resistance. 11 Permanent magnet synchronous machines load characteristics, optimal duty. 12 Brushless direct current machines - duty and design specifics. 13 Synchronous reluctance machines - construction solutions, load characteristics, optimal duty.

Learning activities and teaching methods
Laboratory work, Lecture
  • Contact hours - 65 hours per semester
  • Preparation for laboratory testing; outcome analysis (1-8) - 8 hours per semester
  • Graduate study programme term essay (40-50) - 20 hours per semester
  • Attendance on a field trip (number of real hours - maximum 8h/day) - 6 hours per semester
  • Preparation for an examination (30-60) - 30 hours per semester
prerequisite
Knowledge
to describe functional principles of electric machines
to describe Lenz's, Faraday's and Hopkinson's laws
Skills
to solve non-linear magnetic circuits
to analyze magnetic field problems
to apply basic mathematical operations and electrotechnical relations
Competences
N/A
learning outcomes
Knowledge
to describe components of magnetic fields in electric machines
to determine the excitation principle of certain electric machine
to determine approximate properties of certain machine type according to its topology
to describe load characteristics of electric machine types without neglecting certain parameters
to describe optimal conditions of electric machine duty
Skills
to solve even deep theoretical analyses of electrical machines
to solve the analysis of magnetic fields in electric machines
to calculate machine characteristics with given parameters
to adapt the machine design to optimal duty
to accomplish special measurements
Competences
mgr. studium:independently solves technical problems
teaching methods
Knowledge
Lecture with visual aids
Interactive lecture
Multimedia supported teaching
Practicum
Laboratory work
Field trip
Skills
Lecture with visual aids
Interactive lecture
Multimedia supported teaching
Practicum
Laboratory work
Field trip
Competences
Lecture with visual aids
Interactive lecture
Multimedia supported teaching
Practicum
Laboratory work
Field trip
assessment methods
Knowledge
Combined exam
Skills demonstration during practicum
Individual presentation at a seminar
Skills
Combined exam
Skills demonstration during practicum
Individual presentation at a seminar
Competences
Combined exam
Skills demonstration during practicum
Individual presentation at a seminar
Recommended literature
  • Bartoš, Václav. Elektrické stroje I,II. 1. vyd. Plzeň : VŠSE, 1986.
  • Bartoš, Václav. Teorie elektrických strojů. 1. vyd. Plzeň : Západočeská univerzita, 2006. ISBN 80-7043-509-7.
  • Bašta, Jan; Chládek, Jaroslav; Mayer, Imrich. Teorie elektrických strojů. 1. vyd. Praha : SNTL, 1968.
  • Bianchi, N. Electrical machine analysis using finite elements. CRC Press, 2017. ISBN 978-142005787-4.
  • Boguslawsky, I., Korovkin, N., Hayakawa, M. Large A.C. Machines: Theory and investigation methods of currents and losses in stator and rotor meshes including operation with nonlinear loads. Springer Japan, 2016. ISBN 978-443156475-1.
  • Boldea, I. Reluctance synchronous machines and drives. Oxford : Clarendon Press, 1996. ISBN 0-19-859391-0.
  • Boldea, I. Synchronous generators, second edition. CRC Press, 2015. ISBN 978-149872355-8.
  • Hanselman, Duane. Brushless permanent magnet motor design. 2nd ed. Cranston : The Writers' Collective, 2003. ISBN 1-932133-63-1.
  • Hendershot, J. R.; Miller, T. J. E. Design of brushless permanent-magnet motors. Hillsboro : Magna Physics Publishing, 1994. ISBN 978-1-881855-03-3.
  • Hrabovcová, Valéria. Moderné elektrické stroje. 1. vyd. Žilina : Žilinská univerzita, 2001. ISBN 80-7100-809-5.
  • Krishnan, R. Switched reluctance motor drives: Modeling, simulation, analysis, design, and applications. CRC Press, 2017. ISBN 978-142004164-4.
  • Marius Rosu, et. al. Multiphysics Simulation by Design for Electrical Machines, Power Electronics and Drives. Piscataway, USA, 2018. ISBN 978-1-119-10344-8.
  • Mukerji, S.K., Khan, A.S., Singh, Y.P. Electromagnetics for electrical machines. CRC Press, 2015. ISBN 978-149870915-6.
  • Petrov, G. Elektrické stroje 1, 2. Akademia Praha, 1980.
  • Štěpina, Jaroslav. Prostorové fázory jako základ teorie elektrických strojů. 1. vyd. Plzeň : ZČU, 1993. ISBN 80-7082-089-6.


Study plans that include the course
Faculty Study plan (Version) Category of Branch/Specialization Recommended year of study Recommended semester