Course: Fluid Mechanics

« Back
Course title Fluid Mechanics
Course code KKE/MT
Organizational form of instruction Lecture + Tutorial
Level of course Bachelor
Year of study not specified
Semester Winter
Number of ECTS credits 5
Language of instruction Czech
Status of course Compulsory
Form of instruction Face-to-face
Work placements This is not an internship
Recommended optional programme components None
Lecturer(s)
  • Yanovych Vitalii, Doc. doktor technických věd
  • Pavlíček Petr, Ing.
  • Uruba Václav, Prof. Ing. CSc.
  • Klimko Marek, Ing. Ph.D.
  • Eret Petr, Doc. Ing. Ph.D.
  • Duda Daniel, Doc. RNDr. Ph.D.
  • Kollross Petr, Ing. Ph.D.
  • Tupý David, Ing.
  • Hurda Lukáš, Ing. Ph.D.
Course content
Topics of lectures by weeks: 1st week: Introduction, basic properties of fluids: compressibility, expansibility, extensivity, sound velocity, capillarity. Statics of fluids ? fluid pressure, Euler´s static equation, pressure equation and pressure level equation. Pascal´s law. 2nd week: Incompressible and compressible fluid in gravitational field, relative balance of liquids in containers at an outside inertial acceleration. 3rd week: Liquid force acting on plain and curved surface, determination of hydrostatic centre, force acting on floating body. 4th week: Stability of floating body. Fluid dynamics introduction, classification of Newton flows. Euler´s and Lagrange´s description of flows. 5th week: Trajectories and streamlines. Movement- and continuity equation valid for streamline tube, extension for 3-D flows. Circulation and vorticity. Potential- and stream function of simple flows. Calculation of pressure from potential function. 6th week: Pressure signal transmission in a tube respecting friction. Potential flown around a cylinder without and with circulation. Transverse force on overflown bodies. 7th week: Conformal transformation of overflown cylinder on technical profiles. Viscous streams, molecular and molar shear stress. Laminar, transitional and turbulent flow in a channel, dependence on Reynolds number. 8th week: Normal and shear stress in fluid, their generalization into tensor of tension. Navier-Stokes movement equation of 3-D flow - mathematical and physical properties. 9th week: Similarity theory in fluid mechanics, conditions of similarity. Derivation of similarity criterions from basic partial equations of flow. Production of criterion equations. 10th week: Simplification of Navier-Stokes equation to Bernoulli equation of various types valid for viscous and unviscous, uncompressible and compressible flow. Solution of some technical problems. 11th week: Total, static and dynamic pressure, pneumatic probes for their measurement. Outflow of liquid from a vessel to ambience through a hole: small, big, small with a sleeve - generation of cavitation, submerged hole outflow, time of outflow and equalization of free levels in connected vessels. 12th week: Linear momentum equation and its technical applications: forces acting on moving blades, output of radial and axial turbine, function of centrifugal pump or compressor. 13th week: Laminar and turbulent velocity profiles in tubes. Local and friction pressure losses, hydraulicly smooth and rough walls, Prandtl´s function of roughness. Topics of seminars by weeks: 1st week: Pressures and forces in liquids, compressibility, capillarity. 2nd week: Expansibility, shear stress, liquid manometers and barometers. 3rd week: Incompressible and compressible liquid in gravitational field. 4th week: Relative balance of liquids in vessels under action of inertial accelerations. 5th week: Liquid force acting on a flat surface. Determination od hydrostatic centre. 6th week: Liquid force acting on curved surface, calculation of the hydrostatic centre position. Stability of floating body. 7th week: Computation of streamlines shapes, of rotation and flow continuity. Some mathematical modifications of items in partial differential equations. 8th week: Combination of simple potential flows. 9th week: Solution of simple viscous flows by using of Navier-Stokes equations or general Bernoulli equation. 10th week: Further examples of technical problems solved by different Bernoulli equation types. 11th week: Outflows and calculations of vessels emptying. 12th week: Linear momentum equation and its technical applications. 13th week: Laminar velocity profiles. Hydraulic losses.

Learning activities and teaching methods
Lecture with practical applications, One-to-One tutorial, Seminar classes
  • Preparation for comprehensive test (10-40) - 38 hours per semester
  • Contact hours - 52 hours per semester
  • Preparation for an examination (30-60) - 40 hours per semester
prerequisite
Knowledge
využívat základní znalosti z matematiky, zejména z oblasti diferenciálního počtu
využívat teoretické znalosti z oboru mechanika tekutin, termomechanika, mechanika tuhých těles a pružnost a pevnost na konkrétní praktické řešení
Skills
aplikovat samostatně získané teoretické znalosti na konkrétní praktické řešení
provádět jednoduché fyzikální experimenty
learning outcomes
Knowledge
vysvětlit základní jevy statiky a dynamiky mechaniky tekutin a určit jejich vlastnosti
znát a popsat jednoduché úlohy výpočtově a experimentálně
rozumět matematickému popisu principů složitějších problémů proudění, které jsou jádrem komerčních programů v oboru mechanika tekutin a na základě toho fundovaně pracovat a ověřovat pravdivost výsledků
přenášet metody mechaniky tekutin do příbuzných oborů
Skills
řešit jednoduché praktické příklady zejména z oblasti statiky a jednorozměrného proudění
zvolit správný zjednodušený matematický model pro daný fyzikální problém
teaching methods
Knowledge
One-to-One tutorial
Interactive lecture
Seminar classes
assessment methods
Combined exam
Recommended literature
  • Linhart, Jiří. Mechanika tekutin I. 2. vyd. Plzeň : Západočeská univerzita v Plzni, 2009. ISBN 978-80-7043-766-7.
  • Noskievič, Jaromír. Mechanika tekutin. 1. vyd. Praha : SNTL, 1987.
  • Pěta, Milan. Mechanika tekutin : sbírka příkladů. Vyd. 1. Praha : Vydavatelství ČVUT, 2005. ISBN 80-01-03145-4.


Study plans that include the course
Faculty Study plan (Version) Category of Branch/Specialization Recommended year of study Recommended semester