Course: Geometric and Computational Modelling

« Back
Course title Geometric and Computational Modelling
Course code KMA/GPM
Organizational form of instruction Lecture + Seminar
Level of course Master
Year of study not specified
Semester Summer
Number of ECTS credits 6
Language of instruction Czech
Status of course unspecified
Form of instruction Face-to-face
Work placements This is not an internship
Recommended optional programme components None
Lecturer(s)
  • Bastl Bohumír, Doc. Ing. Ph.D.
Course content
1. Lecture: Applications of geometric modeling. Analytic geometry - Projective extension of homogeneous coordinates. Matrix form for transformation and projection. Exercise: Repeat analytical and differential geometry. 2. Lecture: Differential geometry - Equations of curves, tangent, parameterization, first and second curvature. Frenet formula. Ferguson cubic. Practice: Entering projects. Properties of Ferguson cubic. 3. Lecture: Spline function. Cubic spline curve. Splines of higher degrees. Spline under tension, nonlinear spline. Exercise: Introduction to the use geometric features of mathematical software. 4. Lecture: Bézier curve - Bernstein polynomials, de Casteljau algorithm, a description of spline curves. Exercise: Spline curve. 5. Lecture: B-spline bases, de Boor algorithm, features of B-spline curves. Rational Bezier curves and NURBS (non-uniform rational B-spline). $\beta$ - spline. Exercise: Bezier curves, B-spline. 6. Lecture: Differential geometry - curvature on surfaces. Exercise: Introduction to work with the geometric modeler. 7. Lecture: the tensor product surfaces - spline surfaces and Bézier surfaces. Exercise: NURBS modeling, consultation exercises. 8. Lecture: Coons interpolation - bilinear, bicubic and Ferguson patch, patching. Exercise: Coons patches. 9. Lecture: the tensor product surfaces - B-spline and NURBS surfaces. Exercise: Bezier surfaces and NURBS surfaces 10. Lecture: barycentric coordinates, interpolation on a triangle. Subdivision techniques. Exercise: barycentric calculus, subdivision techniques. 11. Lecture: The geometric model in CAD - edge, surface and volume model. Decomposition, CSG and B-representation. Topological characteristics of solids. Euler characteristics. Exercise: Presentation of student projects. 12. Lecture: Parameterization of the model - parameterization methods, graph algorithms, test for good parameterization, methods of artificial intelligence. Exercise: Presentation of student projects. 13. Lecture: Overview of CA systems, methods of geometric modeling. Basic trends in geometric modeling. Exercise: Presentation of student projects.

Learning activities and teaching methods
Project-based instruction, Students' portfolio, Lecture, Practicum
  • Contact hours - 65 hours per semester
  • Preparation for an examination (30-60) - 45 hours per semester
  • Team project (50/number of students) - 30 hours per semester
  • Presentation preparation (report in a foreign language) (10-15) - 20 hours per semester
prerequisite
Knowledge
orientovat se v základních pojmech analytické geometrie v rovině a v prostoru, výhodou je také zvládnutí základních vlastností křivek a ploch metodami diferenciální geometrie
orientovat se v základních pojmech lineární algebry
Skills
používat metody diferenciálního počtu
pracovat s maticemi a vektory
Competences
N/A
learning outcomes
Knowledge
rozumět teoretickým základům reprezentace křivek a ploch v moderních CAx, GIS a dalších graficky orientovaných systémech
definovat interpolační spline křivku a umět ji použít
definovat Bézierovy, B-spline a NURBS křivky a plochy a umět je použít
definovat Coonsovy pláty a spline plochy a umět je použít
Skills
umět sestavit geometrický model pro složité jevy v souladu s moderními požadavky CAGD (Computer Aided Geometric Design)
používat matematický software pro práci s objekty moderního geometrického modelování, pro tvorbu geometrických modelů a pro odvozování jejich důležitých vlastností
připravit referát na odborné téma s problematikou geometrického modelování na základě odborné literatury
Competences
N/A
N/A
teaching methods
Knowledge
Lecture
Lecture supplemented with a discussion
Interactive lecture
Practicum
Project-based instruction
Task-based study method
Students' portfolio
Skills
Practicum
Task-based study method
Students' portfolio
Competences
Practicum
Students' portfolio
assessment methods
Knowledge
Combined exam
Seminar work
Individual presentation at a seminar
Skills
Seminar work
Individual presentation at a seminar
Competences
Seminar work
Individual presentation at a seminar
Recommended literature
  • Farin, Gerald; Kim, Myung-Soo; Hoschek, Josef. Handbook of computer aided geometric design. 1st ed. Amsterdam : Elsevier, 2002. ISBN 0-444-51104-0.
  • Ježek, František. Geometrické a počítačové modelování. ZČU, 2009.


Study plans that include the course
Faculty Study plan (Version) Category of Branch/Specialization Recommended year of study Recommended semester