Course: Modeling of heterogeneous media

« Back
Course title Modeling of heterogeneous media
Course code KME/MHP
Organizational form of instruction Lecture + Tutorial
Level of course Master
Year of study not specified
Semester Summer
Number of ECTS credits 5
Language of instruction Czech
Status of course unspecified
Form of instruction Face-to-face
Work placements This is not an internship
Recommended optional programme components None
Lecturer(s)
  • Rohan Eduard, Prof. Dr. Ing. DSc.
Course content
1) Introduction - heterogeneous media, examples of applications in biomechanics, geomechanics, composite materials. 2) The notion of the scale, reference volume element,, multiscale description, averaging 3) Diffusion in porous media, various approaches, the Darcy law 4) Fluid saturated porous solids, historical remarks, conservation laws, phenomenological theory. 5) Biot continuum, various parameters and the links between them, basic 1D problems 6) Multiphase theory of mixtures, mechano-chemo-electric interactions, extended Darcy law. 7) Introduction to the asymptotic analysis with respect to the scale parameter, 1D continuum. 8) Homogenization method for periodic structures, formal asymptotic expansion technique. 9) Two-scale convergence, "unfolding" metod and its application for perforated and strongly heterogeneous materials. 10) Waves in heterogeneous elastic media, dispersion. 11) Metamaterials: phononic a photonic crystals, band gaps. 12) Multiscale modeling applied in the tissue biomechanics - bones, tissue blood perfusion. 13) Processing and evaluation of material micrograph images for microstructure reconstruction.

Learning activities and teaching methods
Lecture, Practicum
  • Contact hours - 52 hours per semester
  • Preparation for an examination (30-60) - 40 hours per semester
  • Graduate study programme term essay (40-50) - 45 hours per semester
prerequisite
Knowledge
assumed skills essentials in the mathematical analysis and tensor calculus, basics in PDE
assumed skills basics in mechanics, especially in continuum mechanics
assumed skills basics in numerical methods employed in computational mechanics
znát základy variačního počtu a orientovat se v základních pojmech funkcionální analýzy
Skills
formulovat počáteční a okrajové úlohy mechaniky kontinua
sestavit algoritmus řešení nelineárních soustav algebraických rovnic
řešit počáteční a okrajové úlohy pro lineární obyčejné diferenciální rovnice
řešit počáteční a okrajové úlohy pro lineární parciální diferenciální rovnice Fourierovou metodou
formulovat bilanční vztahy extenzivních veličin pro kontrolní oblast
řešit jednoduché limitní přechody
Competences
N/A
N/A
N/A
learning outcomes
Knowledge
be able to use the multiscale approach of modeling
to understand multiscale description of deforming porous media saturated by fluids
to able to use standard methods of numerical multiscale modeling
vysvětlit podstatu metody homogenizace periodických prostředí
Skills
to apply the homogenization method for non-complicated examples involving linear diffusion, elastostatics, elastodynamics
použít metodu homogenizace pro numerický výpočet efektivních elastických parametrů periodicky heterogenních kompozitů nebo výpočet parametrů jejich tepelné a elektrické vodivosti
použít model Biotova typu pro řešení úloh deformace porézního prostředí nasyceného tekutinou
Competences
N/A
N/A
N/A
teaching methods
Knowledge
Lecture
Practicum
Textual studies
Skills
Lecture
Practicum
Competences
Lecture
Practicum
assessment methods
Knowledge
Combined exam
Seminar work
Skills
Combined exam
Seminar work
Competences
Combined exam
Recommended literature
  • Boer, Reint de. Theory of porous media : highlights in historical development and current state. Berlin : Springer, 2000. ISBN 3-540-65982-X.
  • Cioranescu, Doina; Donato, Patrizia. An introduction to homogenization. 1st ed. Oxford : Oxford University Press, 1999.
  • Coussy, O. Mechanics of Porous Continua, John Wiley & Sons, 2nd Edition. 1995.
  • Hornung, Ulrich. Homogenization and porous media ; Ulrich Hornung. New York : Springer, 1997. ISBN 0-387-94786-8.
  • Sanchez-Palencia, E. Non-Homogeneous Media and Vibration Theory, Lecture Notes in Physics 127,Springer,. Berlin, 1978.


Study plans that include the course
Faculty Study plan (Version) Category of Branch/Specialization Recommended year of study Recommended semester