Course: Mechanics of Materials 1

« Back
Course title Mechanics of Materials 1
Course code KME/PP1
Organizational form of instruction Lecture + Tutorial
Level of course Bachelor
Year of study 2
Semester Winter
Number of ECTS credits 5
Language of instruction Czech, English
Status of course Compulsory
Form of instruction Face-to-face
Work placements This is not an internship
Recommended optional programme components None
Lecturer(s)
  • Horák Lukáš, Ing.
  • Vaňková Tereza, Ing.
  • Heczko Jan, Ing. Ph.D.
  • Zajíček Martin, Ing. Ph.D.
  • Laš Vladislav, Prof. Ing. CSc.
Course content
1) Introduction: classification of the subject, content of the subject. Principal assumptions for the solution of problems in mechanics of materials, methods of solution. External effects on body, external and internal forces, definition of stress and strain. 2) Pure tension - compression. Tensile test, work diagram, deformation energy, strain energy density, Hooke's Law, law of superposition of stresses and displacements, deformation of rod, strength condition. Strain energy for pure tension (compression). Transverse deformation (Poisson's ratio), relative change of volume. Statically indeterminate problems. 3) Geometrical characteristics of cross-sections: first, second and product moments of area, moments of composite areas, moments for parallel axes - (Huygens-Steiner) Parallel axis theorem. Moments for rotated axes. Mohr's circle, principal axes and principal moments. Polar moment of area. 4) Bending of straight beams: definition of pure bending. Identification of internal force effects - normal and shear forces, bending moment - method of sections, Schwedler's theorem. Normal and shear stresses and distribution thereof over cross-section, strength criterion, strain energy. 5) Deflection of beams: double integration method, method of moment areas (Mohr's method). 6) Method of moment areas (Mohr's method) for determining the beam deflection (simply supported beam, cantilever beam, overhanging beam). 7) Deflection of variable cross-section beam. Statically indeterminate cases: compensation method. 8) Torsion: definition of pure torsion. Circular cross-section: derivation of stress and strain formulae, strength condition. Generalization for arbitrary cross-section. Strain energy. 9) Plane stress: definition, relations for stress components in arbitrary plane, Mohr's circle, principal stresses, maximum shear stress. Strains for plane stress - Hooke's Law. 10) Three-dimensional elasticity: definition, principal stresses, Mohr's circle, Hooke's Law, review of uniaxial and plane stresses from the 3D case point of view. Strain energy density for 3D case. 11) Ultimate stresses (Yield criteria): Guest, Von Mises, Mohr. 12) Combined loading. 13) Fundamentals of strain-gauge measurement: electrical resistive strain-gauges, compensation of temperature changes, strain-gauge measurements, principal of measurement bridges. Calculation of stress from measured strains: uniaxial, plane stress for known and unknown principal directions.

Learning activities and teaching methods
Lecture
  • Preparation for an examination (30-60) - 50 hours per semester
  • Contact hours - 65 hours per semester
  • Undergraduate study programme term essay (20-40) - 30 hours per semester
prerequisite
Knowledge
zná základní metody derivace a integrace
zná základy maticového a vektorového počtu
zná mechaniku hmotného bodu a tuhého tělesa
zná základy matematické analýzy
Skills
dovede řešit soustavu lineárních rovnic
dovede řešit základní typy integrálů
dovede používat maticový a vektorový počet
dovede použít základy matematické analýzy
Competences
N/A
N/A
N/A
learning outcomes
Knowledge
student - se orientuje v souvislostech lineární pružnosti a pevnosti
umí řešit napjatost a deformace jednoduchých součástí namáhaných tahem, krutem, ohybem a jejich kombinacemi
umí řešit úlohy rovinné napjatosti a aplikuje podmínky pevnosti
aplikuje znalosti předmětu na základní problémy lineární pružnosti v technické praxi
Skills
dovede analyticky řešit napjatost a deformaci prutu namáhaného tahem krutem a ohybem
dovede dimenzovat namáhaný prut
dovede analyzovat rovinnou a prostorovou napjatost
dovede aplikovat podmínky pevnosti
Competences
N/A
N/A
teaching methods
Knowledge
Lecture
Lecture supplemented with a discussion
Skills
Practicum
Textual studies
Competences
Textual studies
Self-study of literature
assessment methods
Knowledge
Written exam
Skills
Written exam
Competences
Seminar work
Recommended literature
  • Pružnost a pevnost II : kolektiv. 2. díl. Praha : ČVUT, 1985.
  • Gere, J. M. Mechanics of materials. 6th ed. Toronto : Thomson, 2006. ISBN 0-534-41793-0.
  • Hájek, Emanuel. Pružnost a pevnost I. Praha : ČVUT, 1984.
  • Hájek, Emanuel; Reif, Pavel; Valenta, František. Pružnost a pevnost I. Praha : SNTL, 1988.
  • Hearn, E. J. Mechanics of materials : an introduction to the mechanics of elastic and plastic deformation of solids and structural materials. 2. 3rd ed. Oxford : Butterworth-Heinemann, 1997. ISBN 0-7506-3266-6.
  • Laš, Vladislav; Hlaváč, Zdeněk; Vacek, Vlastimil. Technická mechanika v příkladech. Plzeň : Západočeská univerzita, 2001. ISBN 80-7082-849-8.
  • Němec, Jaroslav; Dvořák, Jan; Höschl, Cyril. Pružnost a pevnost ve strojírenství. Praha : SNTL, 1989.
  • Riley, William F.; Sturges, Leroy D.; Morris, Don H. Mechanics of materials. 6th ed. Hoboken : John Wiley & Sons, 2007. ISBN 978-0-471-70511-6.


Study plans that include the course
Faculty Study plan (Version) Category of Branch/Specialization Recommended year of study Recommended semester