Course: Technical and Physical Analysis of Structures 1

« Back
Course title Technical and Physical Analysis of Structures 1
Course code KME/TFA1
Organizational form of instruction Lecture + Tutorial
Level of course Bachelor
Year of study not specified
Semester Summer
Number of ECTS credits 5
Language of instruction Czech
Status of course Compulsory
Form of instruction Face-to-face
Work placements This is not an internship
Recommended optional programme components None
Lecturer(s)
  • Vejvara Luděk, Ing. Ph.D.
Course content
1. Principles of structural design. Development of design methods. Eurocode system. Validity and binding nature of standards. Principles of structural design according to ČSN EN 1990. Basic requirements. Lifespan. Design situations. Basic quantities. Limit states. Partial factor method. Combination of loads for ultimate limit states and serviceability. Applicability criteria. Reliability differentiation. 2. Constant and payload loads. Self weight, permanent and payloads. Examples of determining the effects of loads on basic load-bearing elements. Load due to snow, icing, temperature. Water load. Wind load. Other types of loads. Loads during execution, loads on cranes, loads on traffic. 3. Temperature loading of buildings, temperature field, stationary and non-stationary temperature profiles in structures, stress of building structures by temperature changes. Interaction of load-bearing structure and thermal insulation in conditions of cyclic temperature changes. Thermal expansion of materials, sandwich constructions in conditions of cyclic temperature changes. 4. Principles of designing geotechnical structures. Basic quantities. Load combinations. Determination of load and resistance effects. 5. Influence of structural stiffness on its stress by temperature changes. Stressing of structural elements and their joints by non-force effects. Building physical and fire safety of sandwich building structures. Influence of uneven settlement of buildings on the stress of building structures. Analysis of the interaction structure - foundations - subsoil. Influence of material strength, modulus of elasticity of material, stiffness of structure and coefficients of longitudinal expansion of material on the reliability of building structures. 6. Extra loads. Strategies for emergency design situations. Categorization of structures into reliability classes. Principles of structural robustness. Load due to vehicle impact, gas explosion, charge explosion. Principles of calculating the response of building structures. Dynamic loads. Equivalent static loads. Load combinations. 7. Seismic loads. Seismic regions, classification of earthquakes according to macroseismic scales, Richter scale, design acceleration, elastic response spectra. Simplified and 3D computational procedures, dissipative properties and their use, damping of the structure, combination of seismic load cases. 8. Introduction to the calculation of building structures by the finite element method, basic types of finite elements, design principles, bar structures, lattice structures, frame structures, the effect of joint stiffness on internal forces, density of division. 9. Stability of bar structures, spatial stiffening, stiffening elements, division density, grate modeling, internal forces, modeling of planar structures - walls, internal forces, dimensional internal forces of the singularity of an elastic solution. 10. Modeling of planar structures - slabs, internal forces, dimensional internal forces, boundary phenomena, singularities of elastic solutions, modeling of reinforcements of planar structures. 11. Modeling of column supports, evaluation of internal forces, dimensioning internal forces, modeling of the interaction of foundation structures with the subsoil, soft and rigid subsoil, types of subsoil. 12. Introduction to nonlinear calculations using the finite element method, types of nonlinearities. 13. Introduction to dynamic calculations using the finite element method, basic problems of dynamics.

Learning activities and teaching methods
Lecture, Practicum
  • Contact hours - 65 hours per semester
  • Undergraduate study programme term essay (20-40) - 20 hours per semester
  • Preparation for an examination (30-60) - 32 hours per semester
  • Preparation for comprehensive test (10-40) - 12 hours per semester
prerequisite
Knowledge
be familiar with building structures
to know the basics of structural mechanics and the theory of elasticity
to know the terminology of load-bearing and non-load-bearing structures of buildings
to know mathematical functions and operations, trigonometric and exponential functions
to know the structural systems of buildings
Skills
to determine the internal forces arising in the elements of building structures with regard to the character of the loadings effects
to understand construction drawings - layouts, sections, technical views
to characterize the structural system of the building
Competences
N/A
N/A
N/A
N/A
learning outcomes
Knowledge
be familiar with the load types of buildings
to know the types of random, climatic and extraordinary loads
to know the procedures for determining the self-weight of the building and their structures
to know the procedures for determining of combinations of loads types
to know the effects of different types of loads on building structures
Skills
to create a computational model of the building structure
to analyze and evaluate the consequences of the interaction of the system "structure - foundations - subsoil"
to determine the load combinations for the limit state of ultimate and serviceability
to determine the load combinations of extraordinary effects (e.g. fire, impact of vehicle etc.)
to apply the finite element method in simulating the behaviour of building structures
to analyze the consequences of the effects of loads on the buildings structures
Competences
N/A
N/A
N/A
teaching methods
Knowledge
Lecture
Practicum
Individual study
Self-study of literature
Discussion
Skills
Lecture
Practicum
Self-study of literature
Individual study
Discussion
Competences
Lecture
Practicum
Individual study
Self-study of literature
Discussion
assessment methods
Knowledge
Seminar work
Combined exam
Test
Skills
Written exam
Seminar work
Skills demonstration during practicum
Competences
Written exam
Seminar work
Recommended literature
  • ČSN EN 1990. Zásady navrhování konstrukcí..
  • ČSN EN 1991.Zatížení konstrukcí (část 1-1, 1-2,1-3,1-4).
  • ČSN EN 1994. Navrhování spřažených ocelobetonových konstrukcí.
  • ČSN EN 1997. NAvrhování geotechnických konstrukcí..
  • ČSN EN 1998. Navrhování konstrukcí odolných proti zemětřesení.
  • Černín, Milan; Makovička, D.; Janovský, D. Příručka protivýbuchové ochrany staveb. V Praze : Česká technika - nakladatelství ČVUT, 2008. ISBN 978-80-01-04090-4.
  • Holický M., Marková J., Sýkora M. Zatížení stavebních konstrukcí. Příručka k ČSN EN 1991. 258. publikace ČKAIT Praha 2010, 1991. ISBN 978-80-87093-89-4.
  • Holický, Milan; Marková, Jana. Zásady navrhování stavebních konstrukcí : příručka k ČSN EN 1990. 1. vyd. Praha : Informační centrum ČKAIT, 2007. ISBN 978-80-87093-27-6.
  • Krňanský J. a kol. Technicko-fyzikální analýza staveb ? pomůcka pro cvičení. ČVUT Praha, 1991.
  • Procházka J. Technická pravidla ČBS 01 Statické výpočty. ČBS Servis, s. r.o., 2006.
  • Studnička J., Holický M., Marková J. Zatížení. ČVUT, 2010. ISBN 978-80-01-03768-3.
  • Šejnoha. Numerické metody v mechanice I..
  • Technicko-fyzikální analýza staveb. Technicko-fyzikální analýza staveb. ČVUT Praha, 1990.
  • V. Kolář. Principy a praxe metody konečných prvků..
  • Z.Bittnar,J.Šejnoha. Numerické metody v mechanice I.


Study plans that include the course
Faculty Study plan (Version) Category of Branch/Specialization Recommended year of study Recommended semester