Course: Methods of Solving Mathematical Problems

« Back
Course title Methods of Solving Mathematical Problems
Course code KMT/ŘU1A
Organizational form of instruction Seminar
Level of course Master
Year of study 1
Semester Winter and summer
Number of ECTS credits 3
Language of instruction Czech
Status of course Compulsory
Form of instruction Face-to-face
Work placements This is not an internship
Recommended optional programme components None
Lecturer(s)
  • Honzík Lukáš, PhDr. Ph.D.
Course content
1. Basic types of proofs 2. Geometric proofs 3. Proofs by contradiction 4. Proofs of statements containing an existential quantifier 5. Unicity proofs 6. Dirichlet principle 7. Proofs by mathematical induction 8. Proofs of inequalities with natural numbers

Learning activities and teaching methods
Collaborative instruction, Discussion, One-to-One tutorial, Group discussion, Seminar classes, Seminar
  • Contact hours - 26 hours per semester
  • Preparation for formative assessments (2-20) - 26 hours per semester
prerequisite
Knowledge
master mathematical language and procedures at the level of the bachelor's study field Mathematics in Education
Skills
master mathematical language and procedures at the level of the bachelor's study field Mathematics in Education
Competences
N/A
N/A
N/A
learning outcomes
Knowledge
distinguish basic types of proofs and explain their principles
Skills
make a proof of simple mathematical statements
make a proof of statements containing an existential quantifier (eg using the principle of continuity, Dirichlet's principle)
make a proof by mathematical induction
Competences
N/A
N/A
teaching methods
Knowledge
Seminar
Collaborative instruction
Group discussion
One-to-One tutorial
Discussion
Seminar classes
Task-based study method
Skills
Seminar
Collaborative instruction
Skills demonstration
Group discussion
Task-based study method
Self-study of literature
One-to-One tutorial
Seminar classes
Competences
Lecture with visual aids
Practicum
Individual study
assessment methods
Knowledge
Test
Self-evaluation
Continuous assessment
Skills
Skills demonstration during practicum
Individual presentation at a seminar
Competences
Test
Self-evaluation
Continuous assessment
Recommended literature
  • HERMAN, J., KUČERA, R., ŠIMŠA, J. Metody řešení matematických úloh I. Brno: Masarykova univerzita, 2011. ISBN 978-80-210-5636-7.
  • HERMAN, J., KUČERA, R., ŠIMŠA, J. Metody řešení matematických úloh II. Brno: Masarykova univerzita, 2004. ISBN 80-210-3569-2.
  • Odvárko, O. a kol. Metody řešení matematických úloh.. Praha : SPN, 1990. ISBN 80-04-20434-1.
  • ODVÁRKO, O. Matematika pro střední školy. Praha: Prometheus, 2023. ISBN 978-80-7196-548-0.
  • Polák, J. Středoškolská matematika v úlohách I.. Praha : Prometheus, 2006. ISBN 80-7196-337-2.
  • Polster, Burkard. Q.E.D. : krása matematického důkazu. 1. vyd. v českém jazyce. Praha : Dokořán, 2014. ISBN 978-80-7363-532-9.


Study plans that include the course
Faculty Study plan (Version) Category of Branch/Specialization Recommended year of study Recommended semester