Browse IS/STAG - Portál ZČU

Skip to page content
Website ZČU
Portal title page ZČU
Anonymous user Login Česky
HelpDesk - user support contact
Browse IS/STAG
Login Česky
HelpDesk - user support contact
  • My info
  • Study
My portal
Welcome
Webmail JIS
JISSouhlas koloběžky
Browse IS/STAG Applicant
Information for applicantsElectronic applicationECTS arrivalsCourse catalog
Graduate
Getting startedAlumni ClubAbsolvent - website
Courseware
CoursewareCourses by Faculties

1st level navigation

  • My info
  • Study

2nd level navigation

  • Browse IS/STAG
  • Applicant
  • Graduate
  • Courseware
User disconnected from the portal due to long time of inactivity.
Please, click this link to log back in
(sessions are disconnected after 240 minutes of inactivity. Note that mobile devices may get disconnected even sooner).

Browse IS/STAG (S025)

Help

Main menu for Browse IS/STAG

  • Programmes and specializations.
  • Courses
  • Departments
  • Lecturers
  • Students
  • Examination dates
  • Timetable events
  • Theses, selected item
  • Pre-regist. study groups
  • Rooms
  • Rooms – all year
  • Free rooms – Semester
  • Free rooms – Year
  • Capstone project
  • Times overlap
  •  
  • Title page
  • Calendar
  • Help

Search for a Thesis

Print/export:  Data export to PDF format - which you can print easily... Bookmark this link in your browser so that you may quickly load this IS/STAG page in the future.
Not logged-in user will see only submitted theses.
Only logged-in user will see student personal numbers.

Dates found, count: 1

Search result paging

Found 1 records Print Export to xls List URL
  Surname Name Title Thesis status   Supervisors Reviewers Type of thesis Date of def. Title
Student Type of thesis - - - - - - - - - -
Item shown in detail PEŠKOVÁ Includes the selected person into the timetable overlap calculation. Irena T-splines and Application T-splines and Application Thesis submitted, discontinued after an unsuccessful defence (OPUNO).   Bastl Bohumír Lávička Miroslav Master's thesis 1410300000000 10.09.2014 T-splines and Application Thesis submitted, discontinued after an unsuccessful defence (OPUNO).
Irena PEŠKOVÁ Master's thesis 0XX 0XX 0XX 0XX 0XX 0XX 0XX 0XX 0XX 0XX

Thesis info T-spline objekty a jejich aplikace

  • Basic data
The document you are accessing is protected by copyright law. Unauthorised use may lead to criminal sanctions.
Name PEŠKOVÁ Irena Includes the selected person into the timetable overlap calculation.
Acad. Yr. 2013/2014
Assigning department KMA
Date of defence Sep 10, 2014
Type of thesis Master's thesis
Thesis status Thesis submitted, discontinued after an unsuccessful defence (OPUNO). Thesis submitted, discontinued after an unsuccessful defence (OPUNO).
Completeness of mandatory entries - The following mandatory fields are not filled in for this Thesis.: Title in English
Main topic T-spline objekty a jejich aplikace
Main topic in English T-splines and Application
Title according to student T-spline objekty a jejich aplikace
English title as given by the student -
Parallel name -
Subtitle -
Supervisor Bastl Bohumír, doc. Ing. Ph.D.
Reviewer Lávička Miroslav, prof. RNDr. Ph.D.
Annotation Diplomová práce se zabývá teorií T-spline ploch. První část obsahuje shrnutí základních defi nic a vlastností Spline, Bézierových, B-spline a NURBS křivek a ploch a předkládá definici T-spline plochy. Prostřední část je věnována konverzi mezi T-spline plochou a hierarchickou B-spline plochou. Třetí část se zabývá aproximací bodů v prostoru a popisuje vlastní metodu jak toho docílit.
Annotation in English Master thesis deals with the theory of T-spline surfaces. The beginning part reviews fundamental definitions and features of Spline, Bézier, B-spline, and NURBS curves and surfaces, and introduces the definition of T-spline surface. The middle part is dedicated to conversion between T-spline and hierarchical B-spline surface. And the final part focuses on finding the approximation of scattered 3D data points.
Keywords Spline objekty, Bézierovy objekty, B-spline objekty, NURBS objekty, T-spline plocha, zjemnění, uzlový vektor
Keywords in English Spline object, Bézier object, B-spline object, NURBS object, T-spline surface, refinement, knot vector
Length of the covering note 41s. (48030 znaků)
Language CZ
Annotation
Diplomová práce se zabývá teorií T-spline ploch. První část obsahuje shrnutí základních defi nic a vlastností Spline, Bézierových, B-spline a NURBS křivek a ploch a předkládá definici T-spline plochy. Prostřední část je věnována konverzi mezi T-spline plochou a hierarchickou B-spline plochou. Třetí část se zabývá aproximací bodů v prostoru a popisuje vlastní metodu jak toho docílit.
Annotation in English
Master thesis deals with the theory of T-spline surfaces. The beginning part reviews fundamental definitions and features of Spline, Bézier, B-spline, and NURBS curves and surfaces, and introduces the definition of T-spline surface. The middle part is dedicated to conversion between T-spline and hierarchical B-spline surface. And the final part focuses on finding the approximation of scattered 3D data points.
Keywords
Spline objekty, Bézierovy objekty, B-spline objekty, NURBS objekty, T-spline plocha, zjemnění, uzlový vektor
Keywords in English
Spline object, Bézier object, B-spline object, NURBS object, T-spline surface, refinement, knot vector
Research Plan
  1. Z dostupných zdrojů zpracovat přehled teorie T-spline objektů.
  2. Implementovat metody pro výpočet T-spline ploch ve zvoleném softwaru (Matlab, Mathematica).
  3. Provést rešerši algoritmu konverze mezi standardně používanými reprezentacemi v geometrickém modelování (Bézier, B-spline/NURBS, hierarchický B-spline apod.) a
    T-spline objekty.
  4. Zpracovat přehled známých algoritmů pro aproximaci ploch, dané trojúhelníkové sítě nebo neuspořádané množiny bodů v prostoru s využitím T-spline objektů.
  5. Vybrané algoritmy analyzovat a dle možností se případně pokusit navrhnout modifikace nebo vylepšení těchto algoritmů.
  6. Ve zvoleném softwaru (Matlab, Mathematica) provést implementace vybraných algoritmů.
Research Plan
  1. Z dostupných zdrojů zpracovat přehled teorie T-spline objektů.
  2. Implementovat metody pro výpočet T-spline ploch ve zvoleném softwaru (Matlab, Mathematica).
  3. Provést rešerši algoritmu konverze mezi standardně používanými reprezentacemi v geometrickém modelování (Bézier, B-spline/NURBS, hierarchický B-spline apod.) a
    T-spline objekty.
  4. Zpracovat přehled známých algoritmů pro aproximaci ploch, dané trojúhelníkové sítě nebo neuspořádané množiny bodů v prostoru s využitím T-spline objektů.
  5. Vybrané algoritmy analyzovat a dle možností se případně pokusit navrhnout modifikace nebo vylepšení těchto algoritmů.
  6. Ve zvoleném softwaru (Matlab, Mathematica) provést implementace vybraných algoritmů.
Recommended resources
  • T. W. Sederberg, J. Zheng, A. Bakenov, A. Nasri: T-splines and T-NURCCs. Journal ACM Transactions on Graphics (TOG) - Proceedings of ACM SIGGRAPH 2003, Vol. 22, No. 3, pp. 477-484, 2003.
  • T. W. Sederberg, D. L. Cardon, G. T. Finnigan, N. S. North, J. Zheng,
    T. Lyche: T-spline Simplification and Local Refinement. Journal ACM Transactions on Graphics (TOG) - Proceedings of ACM SIGGRAPH 2004, Vol. 23, No. 3, pp. 276-283, 2004.
  • Y. Wang, J. Zheng, H. S. Seah: Conversion between T-splines and hierarchical B-splines. Proceedings of the Eighth IASTED International Conference COMPUTER GRAPHICS AND IMAGING, 2005.
  • W.-Ch. Li, N. Ray, B. Lévy: Automatic and Interactive Mesh to T-Spline Conversion. Eurographics Symposium on Geometry and Processing, 2006.
Recommended resources
  • T. W. Sederberg, J. Zheng, A. Bakenov, A. Nasri: T-splines and T-NURCCs. Journal ACM Transactions on Graphics (TOG) - Proceedings of ACM SIGGRAPH 2003, Vol. 22, No. 3, pp. 477-484, 2003.
  • T. W. Sederberg, D. L. Cardon, G. T. Finnigan, N. S. North, J. Zheng,
    T. Lyche: T-spline Simplification and Local Refinement. Journal ACM Transactions on Graphics (TOG) - Proceedings of ACM SIGGRAPH 2004, Vol. 23, No. 3, pp. 276-283, 2004.
  • Y. Wang, J. Zheng, H. S. Seah: Conversion between T-splines and hierarchical B-splines. Proceedings of the Eighth IASTED International Conference COMPUTER GRAPHICS AND IMAGING, 2005.
  • W.-Ch. Li, N. Ray, B. Lévy: Automatic and Interactive Mesh to T-Spline Conversion. Eurographics Symposium on Geometry and Processing, 2006.
Týká se praxe No
Enclosed appendices 1 CD
Appendices bound in thesis -
Taken from the library Yes
Full text of the thesis
Thesis defence evaluation Unsatisfactory (Fail)
Appendices
Reviewer's report
Supervisor's report
Defence procedure record -
Defence procedure record file