Browse IS/STAG - Portál ZČU

Skip to page content
Website ZČU
Portal title page ZČU
Anonymous user Login Česky
HelpDesk - user support contact
Browse IS/STAG
Login Česky
HelpDesk - user support contact
  • My info
  • Study
My portal
Welcome
Webmail JIS
JISSouhlas koloběžky
Browse IS/STAG Applicant
Information for applicantsElectronic applicationECTS arrivalsCourse catalog
Graduate
Getting startedAlumni ClubAbsolvent - website
Courseware
CoursewareCourses by Faculties

1st level navigation

  • My info
  • Study

2nd level navigation

  • Browse IS/STAG
  • Applicant
  • Graduate
  • Courseware
User disconnected from the portal due to long time of inactivity.
Please, click this link to log back in.
(Sessions are disconnected after 240 minutes of inactivity. Note that mobile devices may get disconnected even sooner).

Browse IS/STAG (S025)

Help

Main menu for Browse IS/STAG

  • Programmes and specializations.
  • Courses
  • Departments
  • Lecturers
  • Students
  • Examination dates
  • Timetable events
  • Theses, selected item
  • Pre-regist. study groups
  • Rooms
  • Rooms – all year
  • Free rooms – Semester
  • Free rooms – Year
  • Capstone project
  • Times overlap
  •  
  • Title page
  • Calendar
  • Help

Search for a Thesis

Print/export:  Data export to PDF format - which you can print easily... Bookmark this link in your browser so that you may quickly load this IS/STAG page in the future.
Not logged-in user will see only submitted theses.
Only logged-in user will see student personal numbers.

Dates found, count: 1

Search result paging

Found 1 records Print Export to xls List URL
  Surname Name Title Thesis status   Supervisors Reviewers Type of thesis Date of def. Title
Student Type of thesis - - - - - - - - - -
Item shown in detail SOBOTKA Includes the selected person into the timetable overlap calculation. Tomáš Stochastic and Fractional Stochastic Volatility Models Stochastic and Fractional Stochastic Volatility Models Thesis finished and defended successfully (DUO).   Pospíšil Jan Maslowski Bohdan Master's thesis 1403042400000 18.06.2014 Stochastic and Fractional Stochastic Volatility Models Thesis finished and defended successfully (DUO).
Tomáš SOBOTKA Master's thesis 0XX 0XX 0XX 0XX 0XX 0XX 0XX 0XX 0XX 0XX

Thesis info Stochastic and Fractional Stochastic Volatility Models

  • Basic data
The document you are accessing is protected by copyright law. Unauthorised use may lead to criminal sanctions.
Name SOBOTKA Tomáš Includes the selected person into the timetable overlap calculation.
Acad. Yr. 2013/2014
Assigning department KMA
Date of defence Jun 18, 2014
Type of thesis Master's thesis
Thesis status Thesis finished and defended successfully (DUO). Thesis finished and defended successfully (DUO).
Completeness of mandatory entries - The following mandatory fields are not filled in for this Thesis.: Title in English
Main topic Modely stochastické a frakcionální stochastické volatility
Main topic in English Stochastic and Fractional Stochastic Volatility Models
Title according to student Stochastic and Fractional Stochastic Volatility Models
English title as given by the student -
Parallel name Modely stochastické a frakcionální stochastické volatility
Subtitle -
Supervisor Pospíšil Jan, doc. Ing. Ph.D.
Reviewer Maslowski Bohdan, prof. RNDr. DrSc.
Annotation Hlavním cílem této práce je studovat a implementovat vybrané modely stochastické volatility a nově navržený model tzv. aproximativní frakcionální volatility (FSV) od autorů Intarasit a Sattayatham [35]. Poté, co odvodíme semi-analytické řešení obecné oceňovací PDR, srovnáme tyto moderní přístupy především z hlediska úlohy tržní kalibrace. Ta bude provedena za použití jak uměle vytvořených, tak i reálných tržních dat. Dále prozkoumáme přítomnost dlouhé paměti v časových řadách realizované volatility a nakonec vyhodnotíme použitelnost FSV přístupu z hlediska kalibrace na opční trhy.
Annotation in English The main subject of the thesis is to study and implement selected stochastic volatility models alongside the newly proposed approximative fractional stochastic volatility model (FSV) that was firstly introduced by Intarasit and Sattayatham in 2011 [35]. After the semi-closed form solution of a generic pricing PDE is derived, we compare these modern approaches on the task of market calibration. This is done using both synthetic and the real market data. We also inspect a long-range dependence in market realized volatilities and we comment on suitability of the FSV approach with respect to the option market calibration.
Keywords Hurst exponent, fractional Brownian motion, Financial modelling, European options, stochastic volatility, market calibration.
Keywords in English Hurst exponent, fractional Brownian motion, Financial modelling, European options, stochastic volatility, market calibration.
Length of the covering note 94 s.
Language AN
Annotation
Hlavním cílem této práce je studovat a implementovat vybrané modely stochastické volatility a nově navržený model tzv. aproximativní frakcionální volatility (FSV) od autorů Intarasit a Sattayatham [35]. Poté, co odvodíme semi-analytické řešení obecné oceňovací PDR, srovnáme tyto moderní přístupy především z hlediska úlohy tržní kalibrace. Ta bude provedena za použití jak uměle vytvořených, tak i reálných tržních dat. Dále prozkoumáme přítomnost dlouhé paměti v časových řadách realizované volatility a nakonec vyhodnotíme použitelnost FSV přístupu z hlediska kalibrace na opční trhy.
Annotation in English
The main subject of the thesis is to study and implement selected stochastic volatility models alongside the newly proposed approximative fractional stochastic volatility model (FSV) that was firstly introduced by Intarasit and Sattayatham in 2011 [35]. After the semi-closed form solution of a generic pricing PDE is derived, we compare these modern approaches on the task of market calibration. This is done using both synthetic and the real market data. We also inspect a long-range dependence in market realized volatilities and we comment on suitability of the FSV approach with respect to the option market calibration.
Keywords
Hurst exponent, fractional Brownian motion, Financial modelling, European options, stochastic volatility, market calibration.
Keywords in English
Hurst exponent, fractional Brownian motion, Financial modelling, European options, stochastic volatility, market calibration.
Research Plan
  1. Zpracovat podrobnou rešerši modelů stochastické (SV), resp. frakcionální stochastické volatility (fSV).
  2. Popsat matematické vlastnosti vybraných modelů.
  3. Navrhnout postupy simulace jednotlivých modelů a implementovat tyto postupy ve vhodném SW.
  4. Navrhnout proces kalibrace pro fSV model a porovnat ho s používanými postupy kalibrace SV modelů.
  5. Provést srovnání jednotlivých modelů za použití reálných dat.
Research Plan
  1. Zpracovat podrobnou rešerši modelů stochastické (SV), resp. frakcionální stochastické volatility (fSV).
  2. Popsat matematické vlastnosti vybraných modelů.
  3. Navrhnout postupy simulace jednotlivých modelů a implementovat tyto postupy ve vhodném SW.
  4. Navrhnout proces kalibrace pro fSV model a porovnat ho s používanými postupy kalibrace SV modelů.
  5. Provést srovnání jednotlivých modelů za použití reálných dat.
Recommended resources
  • S. E. Shreve: Stochastic Calculus for Finance II: Continuous-Time Models. Springer Finance, 2004.
  • J. Gatheral: The Volatility Surface: A Practitioner's Guide. Wiley Finance, 2006.
  • P. Wilmott: On Quantitative Finance. Wiley Finance, 2006.
  • A. Intarasit, P. Sattayatham: An Approximate Formula of European Option for Fractional Stochastic Volatility Jump-Diffusion Model. Journal of Mathematics and Statistics. 7/3, 230-238.
  • Y. Hu, B. Oksendal: Fractional White Noise Calculus and Applications to Finance. Infinite Dimensional Analysis, Quantum Probability and Related Topics 6, 1-32, (2003).
Recommended resources
  • S. E. Shreve: Stochastic Calculus for Finance II: Continuous-Time Models. Springer Finance, 2004.
  • J. Gatheral: The Volatility Surface: A Practitioner's Guide. Wiley Finance, 2006.
  • P. Wilmott: On Quantitative Finance. Wiley Finance, 2006.
  • A. Intarasit, P. Sattayatham: An Approximate Formula of European Option for Fractional Stochastic Volatility Jump-Diffusion Model. Journal of Mathematics and Statistics. 7/3, 230-238.
  • Y. Hu, B. Oksendal: Fractional White Noise Calculus and Applications to Finance. Infinite Dimensional Analysis, Quantum Probability and Related Topics 6, 1-32, (2003).
Týká se praxe No
Enclosed appendices CD
Appendices bound in thesis graphs, tables
Taken from the library Yes
Full text of the thesis
Thesis defence evaluation Excellent
Appendices
Reviewer's report
Supervisor's report
Defence procedure record -
Defence procedure record file