Browse IS/STAG - Portál ZČU

Skip to page content
Website ZČU
Portal title page ZČU
Anonymous user Login Česky
HelpDesk - user support contact
Browse IS/STAG
Login Česky
HelpDesk - user support contact
  • My info
  • Study
My portal
Welcome
Webmail JIS
JISSouhlas koloběžky
Browse IS/STAG Applicant
Information for applicantsElectronic applicationECTS arrivalsCourse catalog
Graduate
Getting startedAlumni ClubAbsolvent - website
Courseware
CoursewareCourses by Faculties

1st level navigation

  • My info
  • Study

2nd level navigation

  • Browse IS/STAG
  • Applicant
  • Graduate
  • Courseware
User disconnected from the portal due to long time of inactivity.
Please, click this link to log back in.
(Sessions are disconnected after 240 minutes of inactivity. Note that mobile devices may get disconnected even sooner).

Browse IS/STAG (S025)

Help

Main menu for Browse IS/STAG

  • Programmes and specializations.
  • Courses
  • Departments
  • Lecturers
  • Students
  • Examination dates
  • Timetable events
  • Theses, selected item
  • Pre-regist. study groups
  • Rooms
  • Rooms – all year
  • Free rooms – Semester
  • Free rooms – Year
  • Capstone project
  • Times overlap
  •  
  • Title page
  • Calendar
  • Help

Search for a Thesis

Print/export:  Data export to PDF format - which you can print easily... Bookmark this link in your browser so that you may quickly load this IS/STAG page in the future.
Not logged-in user will see only submitted theses.
Only logged-in user will see student personal numbers.

Dates found, count: 1

Search result paging

Found 1 records Print Export to xls List URL
  Surname Name Title Thesis status   Supervisors Reviewers Type of thesis Date of def. Title
Student Type of thesis - - - - - - - - - -
Item shown in detail KAISLER Includes the selected person into the timetable overlap calculation. Martin Generalized eigenvalue problems with nonlinear boundary conditions Generalized eigenvalue problems with nonlinear boundary conditions Thesis finished and defended successfully (DUO).   Holubová Gabriela Nečesal Petr Bachelor's thesis 1434578400000 18.06.2015 Generalized eigenvalue problems with nonlinear boundary conditions Thesis finished and defended successfully (DUO).
Martin KAISLER Bachelor's thesis 0XX 0XX 0XX 0XX 0XX 0XX 0XX 0XX 0XX 0XX

Thesis info Zobecněné úlohy na vlastní čísla s nelineárními okrajovými podmínkami

  • Basic data
The document you are accessing is protected by copyright law. Unauthorised use may lead to criminal sanctions.
Name KAISLER Martin Includes the selected person into the timetable overlap calculation.
Acad. Yr. 2014/2015
Assigning department KMA
Date of defence Jun 18, 2015
Type of thesis Bachelor's thesis
Thesis status Thesis finished and defended successfully (DUO). Thesis finished and defended successfully (DUO).
Completeness of mandatory entries - The following mandatory fields are not filled in for this Thesis.: Title in English
Main topic Zobecněné úlohy na vlastní čísla s nelineárními okrajovými podmínkami
Main topic in English Generalized eigenvalue problems with nonlinear boundary conditions
Title according to student Zobecněné úlohy na vlastní čísla s nelineárními okrajovými podmínkami
English title as given by the student -
Parallel name -
Subtitle -
Supervisor Holubová Gabriela, doc. Ing. Ph.D.
Reviewer Nečesal Petr, Ing. Ph.D.
Annotation Tato bakalářská práce je zaměřena na studium nelokální nelineární okrajové úlohy s parametry ve tvaru -u'' = \lambda u, u=u(x), x \in (0, \pi), u(0)=0, \left(\int_0^\pi \left(u^+\right )^p \dd x \right)^{\frac1p =\left(\int_0^\pi \left(u^-\right )^q \dd x \right)^{\frac1q. Studujeme existenci a jednoznačnost prvního vlastního čísla zjednodušeného modelu, kdy uvažujeme p=1, respektive q=1. Poté odvodíme rovnice, které popisují bodové spektrum této úlohy. Zavedením p=1, respektive q=1 je znovu zjednodušíme a diskutujeme jejich řešitelnost.
Annotation in English This Bachelor thesis is devoted to study of a parameter dependent nonlocal nonlinear boundary value problem -u'' = \lambda u, u=u(x), x \in (0, \pi), u(0)=0, \left(\int_0^\pi \left(u^+\right )^p \dd x \right)^{\frac1p =\left(\int_0^\pi \left(u^-\right )^q \dd x \right)^{\frac1q. Our aim is to study the existence and uniqueness of the first eigenvalue of simplified model while we consider p=1 and q=1, respectively. We deduce equations that describe the point spectrum of this model. Afterthat, while considering p=1 and q=1, respectively, we simplify these equations and discuss their solvability.
Keywords vlastní čísla, okrajová úloha, nelokální okrajová úloha, Fučíkovo spektrum
Keywords in English eigenvalues, boundary value problem, nonlocal boundary value problem, the Fučík spectrum
Length of the covering note 61 s.
Language CZ
Annotation
Tato bakalářská práce je zaměřena na studium nelokální nelineární okrajové úlohy s parametry ve tvaru -u'' = \lambda u, u=u(x), x \in (0, \pi), u(0)=0, \left(\int_0^\pi \left(u^+\right )^p \dd x \right)^{\frac1p =\left(\int_0^\pi \left(u^-\right )^q \dd x \right)^{\frac1q. Studujeme existenci a jednoznačnost prvního vlastního čísla zjednodušeného modelu, kdy uvažujeme p=1, respektive q=1. Poté odvodíme rovnice, které popisují bodové spektrum této úlohy. Zavedením p=1, respektive q=1 je znovu zjednodušíme a diskutujeme jejich řešitelnost.
Annotation in English
This Bachelor thesis is devoted to study of a parameter dependent nonlocal nonlinear boundary value problem -u'' = \lambda u, u=u(x), x \in (0, \pi), u(0)=0, \left(\int_0^\pi \left(u^+\right )^p \dd x \right)^{\frac1p =\left(\int_0^\pi \left(u^-\right )^q \dd x \right)^{\frac1q. Our aim is to study the existence and uniqueness of the first eigenvalue of simplified model while we consider p=1 and q=1, respectively. We deduce equations that describe the point spectrum of this model. Afterthat, while considering p=1 and q=1, respectively, we simplify these equations and discuss their solvability.
Keywords
vlastní čísla, okrajová úloha, nelokální okrajová úloha, Fučíkovo spektrum
Keywords in English
eigenvalues, boundary value problem, nonlocal boundary value problem, the Fučík spectrum
Research Plan
  1. Nastudovat standardní úlohy na vlastní čísla a známé Fučíkovy úlohy.
  2. Uvažovat modifikace předchozích úloh s nelineárními okrajovými podmínkami a zaměřit se na závislost bodového a Fučíkova spektra na parametrech úlohy.
  3. Porovnat teoretické výsledky s numerickými experimenty.
Research Plan
  1. Nastudovat standardní úlohy na vlastní čísla a známé Fučíkovy úlohy.
  2. Uvažovat modifikace předchozích úloh s nelineárními okrajovými podmínkami a zaměřit se na závislost bodového a Fučíkova spektra na parametrech úlohy.
  3. Porovnat teoretické výsledky s numerickými experimenty.
Recommended resources
  • A. Kufner: Obyčejné diferenciální rovnice. Západočeská univerzita, Plzeň (1993).
  • S. Fučík: Boundary value problems with jumping nonlinearities. Časopis pro pěstování matematiky, vol. 101 (1976), 69-87.
  • F. Sadyrbaev, A. Gritsans: Nonlinear Spectra for Parameter Dependent Ordinary Differential Equations. Nonlinear Analysis: Modelling and Control 12, No. 2 (2007), 253 - 267.
  • N. Sergejeva: Fučík spectrum for the second order BVP with nonlocal boundary condition. Nonlinear Anal., Model. Control 12 (2007), 419-429.
Recommended resources
  • A. Kufner: Obyčejné diferenciální rovnice. Západočeská univerzita, Plzeň (1993).
  • S. Fučík: Boundary value problems with jumping nonlinearities. Časopis pro pěstování matematiky, vol. 101 (1976), 69-87.
  • F. Sadyrbaev, A. Gritsans: Nonlinear Spectra for Parameter Dependent Ordinary Differential Equations. Nonlinear Analysis: Modelling and Control 12, No. 2 (2007), 253 - 267.
  • N. Sergejeva: Fučík spectrum for the second order BVP with nonlocal boundary condition. Nonlinear Anal., Model. Control 12 (2007), 419-429.
Týká se praxe No
Enclosed appendices CD
Appendices bound in thesis graphs, tables
Taken from the library Yes
Full text of the thesis
Thesis defence evaluation Excellent
Appendices
Reviewer's report
Supervisor's report
Defence procedure record -
Defence procedure record file