Browse IS/STAG - Portál ZČU

Skip to page content
Website ZČU
Portal title page ZČU
Anonymous user Login Česky
HelpDesk - user support contact
Browse IS/STAG
Login Česky
HelpDesk - user support contact
  • My info
  • Study
My portal
Welcome
Webmail JIS
JISSouhlas koloběžky
Browse IS/STAG Applicant
Information for applicantsElectronic applicationECTS arrivalsCourse catalog
Graduate
Getting startedAlumni ClubAbsolvent - website
Courseware
CoursewareCourses by Faculties

1st level navigation

  • My info
  • Study

2nd level navigation

  • Browse IS/STAG
  • Applicant
  • Graduate
  • Courseware
User disconnected from the portal due to long time of inactivity.
Please, click this link to log back in.
(Sessions are disconnected after 240 minutes of inactivity. Note that mobile devices may get disconnected even sooner).

Browse IS/STAG (S025)

Help

Main menu for Browse IS/STAG

  • Programmes and specializations.
  • Courses
  • Departments
  • Lecturers
  • Students
  • Examination dates
  • Timetable events
  • Theses, selected item
  • Pre-regist. study groups
  • Rooms
  • Rooms – all year
  • Free rooms – Semester
  • Free rooms – Year
  • Capstone project
  • Times overlap
  •  
  • Title page
  • Calendar
  • Help

Search for a Thesis

Print/export:  Data export to PDF format - which you can print easily... Bookmark this link in your browser so that you may quickly load this IS/STAG page in the future.
Not logged-in user will see only submitted theses.
Only logged-in user will see student personal numbers.

Dates found, count: 1

Search result paging

Found 1 records Print Export to xls List URL
  Surname Name Title Thesis status   Supervisors Reviewers Type of thesis Date of def. Title
Student Type of thesis - - - - - - - - - -
Item shown in detail DOSTAL Includes the selected person into the timetable overlap calculation. Martin TEXT-MINING WITH LINKED DATA TEXT-MINING WITH LINKED DATA Thesis finished and defended successfully (DUO).   Ježek Karel - Doctoral thesis 1430949600000 07.05.2015 TEXT-MINING WITH LINKED DATA Thesis finished and defended successfully (DUO).
Martin DOSTAL Doctoral thesis 0XX 0XX 0XX 0XX 0XX 0XX 0XX 0XX 0XX 0XX

Thesis info TEXT-MINING S VYUŽITÍM LINKED DATA

  • Basic data
The document you are accessing is protected by copyright law. Unauthorised use may lead to criminal sanctions.
Name DOSTAL Martin Includes the selected person into the timetable overlap calculation.
Acad. Yr. 2013/2014
Assigning department KIV
Date of defence May 7, 2015
Type of thesis Doctoral thesis
Thesis status Thesis finished and defended successfully (DUO). Thesis finished and defended successfully (DUO).
Completeness of mandatory entries - The following mandatory fields are not filled in for this Thesis.: Title in English
Main topic TEXT-MINING WITH LINKED DATA
Main topic in English TEXT-MINING WITH LINKED DATA
Title according to student TEXT-MINING S VYUŽITÍM LINKED DATA
English title as given by the student -
Parallel name TEXT-MINING S VYUŽITÍM LINKED DATA
Subtitle -
Supervisor Ježek Karel, prof. Ing. CSc.
Annotation Tato práce představuje můj vývoj v oblasti text-miningu realizovaný s využitím sémantické informace získané z Linked Data. Tento přístup je demonstrován na dobře známých text-miningových úlohách jako je volba vlastností, klasifikace a shlukování. Tento přístup je vyhodnocen s využitím běžných datových kolekcí a s využitím několika vlastních korpusů v případech, kdy dostatečně velké korpusy nebyly k dispozici nebo nebyly vhodné pro daný experiment. Standardní datové kolekce zahrnují: 20 News Groups, Reuters-21578, The Open Directory Project, Kolekci článku z WOS pro citační analýzu, Datové kolekce ze Stanford University. Některé navržené metody, prezentované v této práci, však musely být vyhodnoceny manuálně z důvodu neexistence vhodného korpusu, jehož vytvoření by bylo značně náročné. Tato práce pokrývá i některé další experimenty, které se přímo netýkají text-miningu, ale které jsou této oblasti velmi blízké. Tyto experimenty byly realizovány s mými kolegy a zahrnují infometrii, citační analýzu a vylepšení grafových algoritmů typu PageRank.
Annotation in English This thesis proposes the progress in the area of text-mining realized with methods improved by semantic information from Linked Data. This approach is demonstrated on well-known text-mining tasks like feature extraction, classification and clustering. This approach is evaluated with common available data corpuses and with my own several corpuses in cases when the large enough corpuses were not available or were not suitable for an experiment. The standard explored data sets include: 20 News Groups, Reuters-21578, The Open Directory Project, WOS data collection for citation analysis, data collections from Stanford University. Anyway some of the proposed methods had to be evaluated manually because the convenient corpus was not available and its creation would be quite challenging. This thesis also covers some experiments from my other areas of interest close to text-mining and that are related to my field of study. These experiments were realized with my coworkers and they include infometrics, citation analysis and enhancement of PageRank-style graph algorithms.
Keywords text-mining, Linked Data, shlukování, klasifikace
Keywords in English text-mining, Linked Data, clustering, classification
Length of the covering note VIII, 96
Language AN
Annotation
Tato práce představuje můj vývoj v oblasti text-miningu realizovaný s využitím sémantické informace získané z Linked Data. Tento přístup je demonstrován na dobře známých text-miningových úlohách jako je volba vlastností, klasifikace a shlukování. Tento přístup je vyhodnocen s využitím běžných datových kolekcí a s využitím několika vlastních korpusů v případech, kdy dostatečně velké korpusy nebyly k dispozici nebo nebyly vhodné pro daný experiment. Standardní datové kolekce zahrnují: 20 News Groups, Reuters-21578, The Open Directory Project, Kolekci článku z WOS pro citační analýzu, Datové kolekce ze Stanford University. Některé navržené metody, prezentované v této práci, však musely být vyhodnoceny manuálně z důvodu neexistence vhodného korpusu, jehož vytvoření by bylo značně náročné. Tato práce pokrývá i některé další experimenty, které se přímo netýkají text-miningu, ale které jsou této oblasti velmi blízké. Tyto experimenty byly realizovány s mými kolegy a zahrnují infometrii, citační analýzu a vylepšení grafových algoritmů typu PageRank.
Annotation in English
This thesis proposes the progress in the area of text-mining realized with methods improved by semantic information from Linked Data. This approach is demonstrated on well-known text-mining tasks like feature extraction, classification and clustering. This approach is evaluated with common available data corpuses and with my own several corpuses in cases when the large enough corpuses were not available or were not suitable for an experiment. The standard explored data sets include: 20 News Groups, Reuters-21578, The Open Directory Project, WOS data collection for citation analysis, data collections from Stanford University. Anyway some of the proposed methods had to be evaluated manually because the convenient corpus was not available and its creation would be quite challenging. This thesis also covers some experiments from my other areas of interest close to text-mining and that are related to my field of study. These experiments were realized with my coworkers and they include infometrics, citation analysis and enhancement of PageRank-style graph algorithms.
Keywords
text-mining, Linked Data, shlukování, klasifikace
Keywords in English
text-mining, Linked Data, clustering, classification
Research Plan -
Research Plan
-
Recommended resources -
Recommended resources
-
Týká se praxe No
Enclosed appendices -
Appendices bound in thesis illustrations, graphs, schemes, tables
Taken from the library Yes
Full text of the thesis
Thesis defence evaluation Passed
Appendices
Reviewer's report
Supervisor's report
Defence procedure record -
Defence procedure record file